Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ngọc linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 12 2021 lúc 20:50

Vì hai đồ thị cắt nhau tại một điểm trên trục tung nên n=-4

=>m=-2

Buddy
Xem chi tiết
Hà Quang Minh
22 tháng 9 2023 lúc 14:51

a) Với bất kì \({x_0} \in \mathbb{R}\), ta có:

\(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{x - {x_0}}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} 1 = 1\)

Vậy \(f'\left( x \right) = {\left( x \right)^\prime } = 1\) trên \(\mathbb{R}\).

b) Ta có:

\(\begin{array}{l}{\left( {{x^2}} \right)^\prime } = 2{\rm{x}}\\{\left( {{x^3}} \right)^\prime } = 3{{\rm{x}}^2}\\...\\{\left( {{x^n}} \right)^\prime } = n{{\rm{x}}^{n - 1}}\end{array}\)

Buddy
Xem chi tiết
Hà Quang Minh
22 tháng 9 2023 lúc 21:06

a) Với \({x_0}\) bất kì, ta có:

\(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{{x^3} - x_0^3}}{{x - {x_0}}}\\ = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\left( {x - {x_0}} \right)\left( {{x^2} + x{x_0} + x_0^2} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \left( {{x^2} + x{x_0} + x_0^2} \right) = 3x_0^2\)

Vậy hàm số \(y = {x^3}\) có đạo hàm là hàm số \(y' = 3{x^2}\)

b) \(y' = \left( {{x^n}} \right)' = n{x^{n - 1}}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 12 2018 lúc 10:48

Đáp án A

Để đồ thị hàm số y = (2m + 1)x + n trùng với đường thẳng y = 3x - 2 thì:

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 5 2019 lúc 9:48

Hà Thốii
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 6 2019 lúc 12:01

Nguyễn Thị Huế
Xem chi tiết
Nguyễn Hằng
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 10 2023 lúc 20:52

Để hai đồ thị này song song thì

\(\left\{{}\begin{matrix}2m+4=m-1\\n< >2n-2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m=-5\\n< >2\end{matrix}\right.\)