Cho tam giác ABC nhọn, CMR:
cosA.cosB.cosC <=1/8
cho tam giác nhọn ABC có các đường cao AH, BI,CK. chứng minh rằng AH.BI.CK = AB.BC.CA. cosA.cosB.cosC
Mọi người giúp mình với
a: Xét ΔCDA vuông tại D và ΔCEB vuông tại E có
góc DCA chung
=>ΔCDA đồng dạng với ΔCEB
=>CD/CE=CA/CB
=>CD*CB=CA*CE và CD/CA=CE/CB
b; Xét ΔCDE và ΔCAB có
CD/CA=CE/CB
góc C chung
=>ΔCDE đồng dạng với ΔCAB
c:
Xét ΔCAB có
AD,BE là đường cao
AD cắt BE tại H
=>H là trực tâm
=>CH vuông góc AB tại F
góc CEB=góc CFB=90 độ
=>CEFB nội tiếp
=>góc CEF+góc CBF=180 độ
mà góc CEF+góc AEF=180 độ
nên góc AEF=góc CBA
=>góc AEF=góc CED
Cho tam giác ABC thỏa mãn 1 + cosA.cosB.cosC = 9.sin\(\frac{A}{2}\).sin\(\frac{B}{2}\).sin\(\frac{C}{2}\)
CMR ABC là tam giác đều
Cho tam giác nhọn ABC, trực tâm H. CMR: HA+HB+HC<2/3 chi vi tam giác ABC
cho tam giác nhọn ABC . dựng phía ngoài tam giác 2 tam giác đều ABE,ACF lại dựng hbh AEPF . cmr PBClà tam giác đều
ta có : góc EBN = góc FCA(1)
lại có : góc EBC = 90 độ ; FCB = 90 độ
=> EBC = FBC (2)
từ (1) và (2) suy ra:
góc PBC = góc PCB
tiếp tục có:
\(\widehat{BPH}+\widehat{CPH}=2.\widehat{EBP}\)
mà \(2.\widehat{EBP}=\widehat{PBC}\)
\(\Rightarrow\widehat{BPH}+\widehat{CPH}=\widehat{PBC}\)
\(mà\widehat{BPH}+\widehat{CPH=}\widehat{BPC}\)
\(\Rightarrow\widehat{PBC}=\widehat{PBC}=\widehat{PCB}\)
từ đó suy ra : tam giác PBC là tam giác đều
( bn không hỉu chỗ nào thì hỏi lại mình nhe)
Theo hình vẽ thì $PBC$ làm sao mà là tam giác đều được nhỉ?
cho tam giác ABC nhọn . dựng ra phía ngoài hai tam giác đều ABE,ACF lại dựng hbh AEPF . CMR PBC là tam giác đều
Cho tam giác ABC nhọn . CMR : \(\Sigma\sqrt{\dfrac{cosA.cosB}{cosC}}>2\)
Ta có : \(cos^2A+cos^2B+cos^2C=1-2.cosA.cosB.cosC\)
Đặt cos A = a ; cos B = b ; cos C = c thì : \(a^2+b^2+c^2+2abc=1\)
Dự đoán : a = b = c = 1/2 nên ta đặt
a = \(\sqrt{\dfrac{xy}{\left(y+z\right)\left(z+x\right)}}\) ; \(b=\sqrt{\dfrac{yz}{\left(x+z\right)\left(x+y\right)}};c=\sqrt{\dfrac{xz}{\left(y+z\right)\left(x+y\right)}}\) ( x ; y ; z > 0 )
Khi đó : \(\Sigma\sqrt{\dfrac{cosA.cosB}{cosC}}=\Sigma\sqrt{\dfrac{y}{x+z}}\)
Cần c/m : \(\Sigma\sqrt{\dfrac{y}{x+z}}>2\) (*)
BĐT quen thuộc ; AD BĐT AM - GM ta được : \(\sqrt{\dfrac{x+z}{y}}\le\dfrac{1}{2}\left(\dfrac{x+y+z}{y}\right)\Rightarrow\sqrt{\dfrac{y}{x+z}}\ge\dfrac{2y}{x+y+z}\)
Suy ra : \(\Sigma\sqrt{\dfrac{y}{x+z}}\ge\dfrac{2\left(x+y+z\right)}{x+y+z}=2\)
" = " ko xảy ra nên hiển nhiên (*) đúng
Hoàn tất c/m
Cho tam giác ABC nhọn có 3 đường cao DH , EI , FK cắt nhau tại O
a , CMR : tam giác DKF đồng dạng với tam giác DIE
và DK . DE = DF . DI
b , CMR : tam giác DKI đồng dạng với tam giác DFE
c , CMR : góc FIH = DEF , IE là tia phân giác của góc KIH
d , Cmr : EK . ED + FI . FD = EK2
Sửa đề: Cho ΔDEF nhọn
a: Xét ΔDKF vuông tại K và ΔDIE vuông tại I có
\(\widehat{KDF}\) chung
Do đó: ΔDKF~ΔDIE
=>\(\dfrac{DK}{DI}=\dfrac{DF}{DE}\)
=>\(DK\cdot DE=DI\cdot DF\)
b: ta có: \(\dfrac{DK}{DI}=\dfrac{DF}{DE}\)
=>\(\dfrac{DK}{DF}=\dfrac{DI}{DE}\)
Xét ΔDKI và ΔDFE có
\(\dfrac{DK}{DF}=\dfrac{DI}{DE}\)
\(\widehat{KDI}\) chung
Do đó: ΔDKI~ΔDFE
c: Xét ΔFIE vuông tại I và ΔFHD vuông tại H có
\(\widehat{HFD}\) chung
Do đó: ΔFIE~ΔFHD
=>\(\dfrac{FI}{FH}=\dfrac{FE}{FD}\)
=>\(\dfrac{FI}{FE}=\dfrac{FH}{FD}\)
Xét ΔFIH và ΔFED có
\(\dfrac{FI}{FE}=\dfrac{FH}{FD}\)
\(\widehat{EFD}\) chung
Do đó: ΔFIH~ΔFED
=>\(\widehat{FIH}=\widehat{FED}\)
d:
Sửa đề: \(EK\cdot ED+FI\cdot FD=EF^2\)
Xét ΔEKF vuông tại K và ΔEHD vuông tại H có
góc KEF chung
Do đó: ΔEKF~ΔEHD
=>\(\dfrac{EK}{EH}=\dfrac{EF}{ED}\)
=>\(EK\cdot ED=EF\cdot EH\)
Ta có: \(\dfrac{FI}{FE}=\dfrac{FH}{FD}\)
=>\(FI\cdot FD=FH\cdot FE\)
\(EK\cdot ED+FI\cdot FD\)
\(=EF\cdot EH+FH\cdot EF=EF^2\)
cho tam giác ABC nhọn. vẽ ra phía ngoài tam giác ABC hai tam giác vuông cân là ABD và ACE. gọi M là trung điểm BC. CMR: góc DME vuông