Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Lan Anh
Xem chi tiết
illumina
Xem chi tiết
Hà Quang Minh
17 tháng 8 2023 lúc 8:22

a, Để hàm số là hàm bậc nhất thì \(\left(-m^2+m-2\right)\ne0\)

\(\Rightarrow-\left(m-\dfrac{1}{2}\right)^2-\dfrac{7}{4}\ne0\) (luôn đúng vì \(-\left(m-\dfrac{1}{2}\right)^2\le0\forall m\))

Vậy hàm số luôn là hàm bậc nhất.

 

b,Để hàm số là hàm bậc nhất thì \(\left\{{}\begin{matrix}2m^2-6m=0\\2m+3\ne0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}m=0\\m=3\\m\ne-\dfrac{3}{2}\end{matrix}\right.\left(tm\right)\)

Vậy hàm số là hàm bậc nhất khi m ∈ {0;3}.

illumina
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 8 2023 lúc 20:45

a: y=m^2x-4mx+8m+4x+3

=x(m^2-4m+4)+8m+3

Để đây là hàm số bậc nhất thì m^2-4m+4<>0

=>(m-2)^2<>0

=>m-2<>0

=>m<>2

b: Để đây là hàm số bậc nhất thì \(\left\{{}\begin{matrix}2018-2m>=0\\\sqrt{2018-2m}< >0\end{matrix}\right.\Leftrightarrow2018-2m>0\)

=>2m<2018

=>m<1009

Hà Mi
Xem chi tiết
Nguyễn Việt Lâm
17 tháng 7 2021 lúc 20:48

\(y'=3x^2-2\left(m+1\right)x-\left(2m^2-3m+2\right)\)

\(\Delta'=\left(m+1\right)^2+3\left(2m^2-3m+2\right)=7\left(m^2+m+1\right)>0\) ; \(\forall m\)

\(\Rightarrow y'=0\) luôn có 2 nghiệm phân biệt

Bài toán thỏa mãn khi: \(x_1< x_2\le2\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1-2\right)\left(x_2-2\right)\ge0\\\dfrac{x_1+x_2}{2}< 2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2-2\left(x_1+x_2\right)+4\ge0\\x_1+x_2< 4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-\left(2m^2-3m+2\right)}{3}-\dfrac{4\left(m+1\right)}{3}+4\ge0\\\dfrac{2\left(m+1\right)}{3}< 4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-2m^2-m+6\ge0\\m< 5\end{matrix}\right.\) \(\Leftrightarrow-2\le m\le\dfrac{3}{2}\)

ngọc linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 12 2021 lúc 20:50

Vì hai đồ thị cắt nhau tại một điểm trên trục tung nên n=-4

=>m=-2

Hoàng
Xem chi tiết
Hồng Phúc
12 tháng 3 2021 lúc 12:58

ngọc Đào
21 tháng 8 lúc 21:48

hồng phúc ơi bạn cho mk hỏi tai sao x>-1/24 không t/m vậy ạ

 

Toanhockho
Xem chi tiết
missing you =
29 tháng 1 2022 lúc 10:42

\(1.x^2+\dfrac{1}{x^2}-2m\left(x+\dfrac{1}{x}\right)+1+2m=0\left(1\right)\)\(đặt:x^2+\dfrac{1}{x^2}=t\)

\(x>0\Rightarrow t\ge2\sqrt{x^2.\dfrac{1}{x^2}}=2\)

\(x< 0\Rightarrow-t=-x^2+\dfrac{1}{\left(-x^2\right)}\ge2\Rightarrow t\le-2\)

\(\Rightarrow t\in(-\infty;-2]\cup[2;+\infty)\left(2\right)\)

\(\Rightarrow\left(1\right)\Leftrightarrow t^2-2mt+2m-1=0\)

\(\Leftrightarrow\left(t-1\right)\left(t-2m+1\right)=0\Leftrightarrow\left[{}\begin{matrix}t=1\notin\left(2\right)\\t=2m-1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2m-1\le-2\\2m-1\ge2\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}m\le-\dfrac{1}{2}\\m\ge\dfrac{3}{4}\end{matrix}\right.\)

\(2.\)  \(f^2\left(\left|x\right|\right)+\left(m-2\right)f\left(\left|x\right|\right)+m-3=0\left(1\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}f\left(\left|x\right|\right)=-1\\f\left(\left|x\right|\right)=3-m\end{matrix}\right.\)

\(dựa\) \(vào\) \(đồ\) \(thị\) \(f\left(\left|x\right|\right)\) \(\Rightarrow f\left(\left|x\right|\right)=-1\) \(có\) \(2nghiem\) \(pb\)

\(\left(1\right)có\) \(6\) \(ngo\) \(pb\Leftrightarrow\left\{{}\begin{matrix}-1< 3-m< 3\\3-m\ne-1\\\end{matrix}\right.\)\(\Leftrightarrow0< m< 4\)

\(\Rightarrow m=\left\{1;2;3\right\}\)

 

 

Trần T.Anh
Xem chi tiết
Hải Yến Lê
Xem chi tiết
𝓓𝓾𝔂 𝓐𝓷𝓱
3 tháng 6 2021 lúc 22:43

Để hàm số đồng biến khi \(x< 0\) \(\Leftrightarrow2m-3>0\) \(\Leftrightarrow m>\dfrac{3}{2}\)

  Vậy ...

Xem chi tiết

\(Ta.có:y=ax+b\)

HSĐB khi a>0 ; HSNB khi a<0

Từ đây em giải các a ra thôi nè!

Nguyễn Lê Phước Thịnh
15 tháng 10 2023 lúc 9:41

a: Để hàm số đồng biến thì 2m-10>0

=>2m>10

=>m>5

b: Để hàm số đồng biến thì 2-5m>0

=>5m<2

=>m<2/5

c: Để hàm số nghịch biến thì 3-7m<0

=>7m>3

=>m>3/7

d:

\(y=m\left(3-2x\right)+x-2\)

\(=3m-2mx+x-2\)

\(=x\left(-2m+1\right)+3m-2\)

Để hàm số nghịch biến thì -2m+1<0

=>-2m<-1

=>m>1/2

e: Để đây là hàm số bậc nhất thì \(\left\{{}\begin{matrix}m>=0\\3-\sqrt{m}\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>=0\\m\ne9\end{matrix}\right.\)

f: Để đây là hàm số bậc nhất thì

\(\left\{{}\begin{matrix}m-2>=0\\\sqrt{m-2}-1< >0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>=2\\\sqrt{m-2}< >1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m>=2\\m-2< >1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>=2\\m< >3\end{matrix}\right.\)

g: Để hàm số đồng biến thì \(m^2+6m+9>0\)

=>\(\left(m+3\right)^2>0\)

=>m+3<>0

=>m<>-3

h: Để đây là hàm số bậc nhất thì \(\dfrac{m-1}{m-4}\ne0\)

=>\(m\notin\left\{1;4\right\}\)