Để hàm số đồng biến khi \(x< 0\) \(\Leftrightarrow2m-3>0\) \(\Leftrightarrow m>\dfrac{3}{2}\)
Vậy ...
Để hàm số đồng biến khi \(x< 0\) \(\Leftrightarrow2m-3>0\) \(\Leftrightarrow m>\dfrac{3}{2}\)
Vậy ...
Cho hàm số \(y=\left(2-m\right)x^2\) \(\left(m\ne\dfrac{3}{2}\right)\)
Tìm m để hàm số đồng biến khi x<0
a) tính A=\(3\sqrt{8}-\sqrt{50}-\sqrt{\left(1-\sqrt{2}\right)^2}\)
b) tìm giá trị của tham số m để hàm số y=(2-m)x+2 đồng biến trên R
c)rút gọn biểu thức P=\(\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}}{x-2\sqrt{x}+1}\)và tìm các giá trị của x để P>\(\dfrac{1}{2}\)
Bài tập:
Câu 1:Cho hàm số \(y=\left(1-m\right)^2x+m,m\ne+-1\);hàm số luôn đồng biến khi nào?
Câu 2:Đường thẳng d đi qua E(0;1) song song với đường thẳng y=2x thì phương trình của d là?
Câu 3:Cho \(\alpha\)là góc nhọn ,biết sin\(\alpha\)=\(\dfrac{3}{5}\).Khi đó cos\(\alpha\) bằng ?
Câu 4:Cho đường trong (O;R) đường kính AB.Điểm M thuộc tia đối tia AB sao cho MA=R.Kẻ tiếp tuyến MC tới đường tròn.Độ dài đoạn MC là ?
Cho 2 hàm số \(y=\left(3m+2\right)x+5\) với \(m\ne-1\), \(y=-x-1\) có đồ thị cắt nhau tại điểm \(A\left(x;y\right)\). Tìm các giá trị \(m\) để biểu thức \(P=y^2+2x-2019\) đạt giá trị nhỏ nhất.
Cho 2 hàm số: \(y=x^2\) \(\left(P\right)\) và \(y=-2x-m+3\left(d\right)\)
Tìm \(m\) để đường thẳng \(\left(d\right)\) đi qua điểm \(A\) nằm trên \(\left(P\right)\) có hoành độ bằng \(2\)
Cho pt: \(mx^2-\left(2m+1\right)x+m+3=0\)
a) tìm m để pt trên có 2 nghiệm phân biệt ≠ 0
b) giả sử \(x_1;x_2\) là 2 nghiệm của pt trên. tìm m để:
\(\dfrac{mx_1^2+\left(2m+1\right)x_2+m+3}{m}+\dfrac{m}{mx_2^2+\left(2m+1\right)x_1+m+3}=2\)
Cho pt: \(m^2-\left(2x+1\right)x+m+3=0\)
a). Tìm m để pt trên có 2 nghiệm phân biệt ≠ 0
b). giả xử \(x_1;x_2\) là 2 nghiệm của pt trên. Tìm m để:
\(\dfrac{mx_1^2+\left(2m+1\right)x_2+m+3}{m}+\dfrac{m}{mx_2^2+\left(2m+1\right)x_1+m+3}=2\)
bài1
a) hãy xác định hàm số y=ax\(^2\) bt rằng đồ thị của nó đi qua điểm \(M(-2;2)\)
b\()\) vẽ đồ thị hàm số y= \(\dfrac{1}{2}x^2\)
bài 2
a)\(\left\{{}\begin{matrix}4x+5y=3\\x-3y=5\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{4}{5}\\\dfrac{1}{x}-\dfrac{1}{y}=\dfrac{1}{5}\end{matrix}\right.\)
giải hộ tui với
cho biểu thức:
P=\(\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2\sqrt{x}}{x\sqrt{x}-x+\sqrt{x}-1}\right)\)\(:\left(\dfrac{x+\sqrt{x}}{x\sqrt{x}+x+\sqrt{x}+1}+\dfrac{1}{x+1}\right)\)
với x\(\ge\)0;x\(\ne\)1
1)Rút gọn P
2)Tìm x để P<\(\dfrac{1}{2}\)
3) tìm m để phương trình (\(\sqrt{x}+1\))P= m-x có nghiệm x