Cho . Chứng minh rằng A chia hết cho 13
Giúp mik với mai mình thi rồi ...
cho minh hỏi A=1+3+32+33+...+3101 chứng minh A chia hết cho 13
giúp minh với, ko mình thi rồi nên sợ lắm
\(A=1+3+3^2+3^3+...+3^{101}\)
\(=>3A=3+3^2+3^3+3^4+...+3^{102}\)
\(=>3A-A=\left(3+3^2+3^3+3^4+...+3^{102}\right)-\left(1+3+3^2+3^3+...+3^{101}\right)\)
\(=>2A=3^{102}-1\)
\(=>A=\dfrac{3^{102}-1}{2}\)
chứng minh rằng
A = \(3+3^2+3^3+3^4+...+3^{60}\)
a) A chia hết cho 3
b) A chia hết cho 4
c) A chia hết cho 13
giúp mình mik cần gấp
a) \(A=3+3^2+3^3+...+3^{60}\)
Vì \(3⋮3;3^2⋮3;3^3⋮3;...;3^{60}⋮3\)
\(\Rightarrow3+3^2+3^3+...+3^{60}⋮3\\ \Rightarrow A⋮3\)
b) \(A=3+3^2+3^3+...+3^{60}\\ =\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{59}+3^{60}\right)\\ =3\left(1+3\right)+3^3\left(1+3\right)+...+3^{59}\left(1+3\right)\\ =\left(1+3\right)\left(3+3^3+...+5^{59}\right)\\ =4\left(3+3^3+...+5^{59}\right)⋮4\)
chứng minh rằng A=1+2+22+...+2119 chia hết cho 7;3;17;31
giải giúp mình với mai thi hkI rồi nè
\(A=1+2+2^2+...+2^{119}\\ =\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{118}+2^{119}\right)\\ =\left(1+2\right)+2^2\left(1+2\right)+...+2^{118}\left(1+2\right)\\ =\left(1+2\right)\left(1+2^2+...+2^{118}\right)\\ =3\left(1+2^2+...+2^{118}\right)⋮3\\ \\ A=1+2+2^2+...+2^{119}\\ A=\left(1+2+2^2\right)+...+\left(2^{117}+2^{118}+2^{119}\right)\\ A=\left(1+2+2^2\right)+...+2^{117}\left(1+2+2^2\right)\\ =\left(1+2+2^2\right)\left(1+...+2^{117}\right)\\ =7.\left(1+...+2^{117}\right)⋮7\)
Còn các ý sau bạn tự làm theo cách này tiếp nha!
Chứng minh rằng :
Tổng S = 3^1+3^2+3^3+...+3^100 chia hết cho 120
giúp mik vs, mai mik thi rồi
\(S=3^1+3^2+3^3+.....+3^{100}\) \(=\left(3^1+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)+...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)
\(=120+3^5.\left(3^1+3^2+3^3+3^4\right)+....+3^{97}.\left(3^1+3^2+3^3+3^4\right)\)
\(=1.120+3^5.120+...+3^{97}.120\)
\(=\left(1+3^5+...+3^{97}\right).120\)
\(\Rightarrow S⋮120\)
Vậy ........
chứng minh 315 + 314 + 313 chia hết cho 13
giúp mình với
\(3^{15}+3^{14}+3^{13}\)
\(=3^{13}\left(3^2+3+1\right)=3^{13}\cdot13⋮13\)
\(=3^{13}\left(3^2+3+1\right)=3^{13}\cdot13⋮13\)
\(3^{15}+3^{14}+3^{13}\)
\(=3^{13}\left(3^2+3+1\right)\)
\(=3^{13}\left(9+3+1\right)\)
\(=3^{13}.13\)⋮13
⇒\(3^{15}+3^{14}+3^{13}\)⋮13
chứng minh 1+3+32+33+34+...+32023+32024 chia hết cho 13
giúp mik với !!😥😥😥
Đặt \(A=1+3+3^2+3^3+3^4+\cdot\cdot\cdot+3^{2023}+3^{2024}\)
\(=(1+3+3^2)+(3^3+3^4+3^5)+(3^6+3^7+3^8)+\dots+(3^{2022}+3^{2023}+3^{2024})\\=13+3^3\cdot(1+3+3^2)+3^6\cdot(1+3+3^2)+\dots+3^{2022}\cdot(1+3+3^2)\\=13+3^3\cdot13+3^6\cdot13+\dots+3^{2022}\cdot13\\=13\cdot(1+3^3+3^6+\dots+3^{2022})\)
Vì \(13\cdot(1+3^3+3^6+\dots+3^{2022})\vdots13\)
nên \(A\vdots13\)
\(\Rightarrowđpcm\)
Đặt S=1+3+32+33+34+⋅⋅⋅+32023+32024
S=(1+3+32)+(33+34+35)+⋯+(32022+32023+32024)
S=13+33(1+3+32)+...+32022(1+3+32)
S=13+33.13+...+32022.13
S=13(33+...+32022) ⋮ 13
Vậy S⋮13
A=1+2+2^2+2^3.....2^101
chứng minh A chia hết cho 13
giúp mik với
A=1+2+2^2+2^3.....2^101
chứng minh A chia hết cho 13
giúp mik với
1) Chứng minh rằng :
a) 7^104 - 1 chia hết cho 5
b) 3^201 + 2 chia hết cho 5
Giúp mik nhanh nha các bạn
mai mình đi học rồi
a) 7104 - 1 = (74)26 - 1 = ...1 - 1 = ...0 \(⋮\)5
b) 3201 + 2 = (34)50 . 3 + 2 = ...3 + 2 = ...5 \(⋮\)5
Chứng minh rằng :
a)A=4+4^2+4^3+4^4+...+4^20 chia hết cho 5
b)B=5+5^2+5^3+...+5^30 chia hết cho 6
GIÚP MÌNH NHA MAI MÌNH PHẢI THI RỒI
A=(4+4^2)+(4^3+4^4)+...+(4^19+4^20)
A=4(1+4)+4^3(1+4)+...+4^19(1+4)
A=(1+4).(4+4^3+...+4^19)
A=5.(4+4^3+..+4^19)
vì 5 chia hết cho =>5.(4+4^3+...+4^19) chí hết cho 5
=> A chia hết cho 5
câu b làm tương tự cũng nhóm mỗi nhóm là 2 số hạng giống a nha bn