Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
títtt
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 9 2023 lúc 19:33

a: Đặt y'>0

=>(2x-3)(x^2-1)>0

Th1: 2x-3>0 và x^2-1>0

=>x>3/2 và (x>1 hoặc x<-1)

=>x>3/2

TH2: 2x-3<0 và x^2-1<0

=>x<3/2 và -1<x<1

=>-1<x<1

=>Hàm số đồng biến khi x>3/2 hoặc -1<x<1

Đặt y'<0

=>(2x-3)(x^2-1)<0

TH1: 2x-3>0 và x^2-1<0

=>x>3/2 và -1<x<1

=>Loại

TH2: 2x-3<0 và x^2-1>0

=>x<3/2 và (x>1 hoặc x<-1)

=>1<x<3/2 hoặc x<-1

=>Hàm số nghịch biến khi 1<x<3/2 hoặc x<-1

b: Đặt y'>0

=>(x+2)(2x+5)<0

=>-5/2<x<-2

=>hàm số đồng biến khi -5/2<x<-2

Đặt y'<0

=>(x+2)(2x+5)>0

=>x>-2 hoặc x<-5/2

=>Hàm số nghịch biến khi x>-2 hoặc x<-5/2

títtt
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 10 2023 lúc 14:42

a: \(y'< 0\)

=>\(\left(x-3\right)^3\cdot\left(x-1\right)^{22}\cdot\left(-3x-6\right)^7< 0\)

=>\(\left(x-3\right)\left(-3x-6\right)< 0\)

=>\(\left(x+2\right)\left(x-3\right)>0\)

=>\(\left[{}\begin{matrix}x>3\\x< -2\end{matrix}\right.\)

y'>0

=>\(\left(x+2\right)\left(x-3\right)< 0\)

=>\(-2< x< 3\)

y'=0

=>\(\left[{}\begin{matrix}x-3=0\\x-1=0\\-3x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\\x=-2\end{matrix}\right.\)

Ta có bảng xét dấu sau:

x\(-\infty\)       -2                    1               3               +\(\infty\)
y'-              0        +          0      +       0              -

Vậy: Hàm số đồng biến trên các khoảng \(\left(-2;1\right);\left(1;3\right)\)

Hàm số nghịch biến trên các khoảng \(\left(-\infty;-2\right);\left(3;+\infty\right)\)

b: y'<0

=>\(\left(4x-3\right)^3\cdot\left(x^2-1\right)^{21}\left(3x-9\right)^7< 0\)

=>\(\left(4x-3\right)\left(3x-9\right)\left(x^2-1\right)< 0\)

=>\(\left(4x-3\right)\left(x-3\right)\left(x^2-1\right)< 0\)

TH1: \(\left\{{}\begin{matrix}\left(4x-3\right)\left(x-3\right)>0\\x^2-1< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left[{}\begin{matrix}x>3\\x< \dfrac{3}{4}\end{matrix}\right.\\-1< x< 1\end{matrix}\right.\Leftrightarrow-1< x< \dfrac{3}{4}\)

TH2: \(\left\{{}\begin{matrix}\left(4x-3\right)\left(x-3\right)< 0\\x^2-1>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{4}< x< 3\\\left[{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow1< x< 3\)

y'>0

=>\(\left(4x-3\right)\left(x-3\right)\left(x^2-1\right)>0\)

TH1: \(\left\{{}\begin{matrix}\left(4x-3\right)\left(x-3\right)>0\\x^2-1>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left[{}\begin{matrix}x>3\\x< \dfrac{3}{4}\end{matrix}\right.\\\left[{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>3\\x< -1\end{matrix}\right.\)

TH2: \(\left\{{}\begin{matrix}\left(4x-3\right)\left(x-3\right)< 0\\x^2-1< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{3}{4}< x< 3\\-1< x< 1\end{matrix}\right.\Leftrightarrow\dfrac{3}{4}< x< 1\)

Ta sẽ có bảng xét dấu sau đây:

x\(-\infty\)       -1        3/4        1       3          +\(\infty\)
y'+                   0   -     0     +   0   -   0             +

Vậy: Hàm số đồng biến trên các khoảng \(\left(-\infty;-1\right);\left(\dfrac{3}{4};1\right);\left(3;+\infty\right)\)

Hàm số nghịch biến trên các khoảng \(\left(-1;\dfrac{3}{4}\right);\left(1;3\right)\)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
21 tháng 9 2023 lúc 15:46

Do \(\left( { - 2\pi ; - \pi } \right) = \left( { - 2\pi ;\pi  - 2\pi } \right)\) nên hàm số \(y = \cos x\) nghịch biến trên khoảng \(\left( { - 2\pi ; - \pi } \right)\)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
23 tháng 9 2023 lúc 11:24

Từ đồ thị hàm số ta thấy khi x tăng từ -3 đến -1 và từ -1 đến 0 thì đồ thị đi lên nên hàm số đồng biến trên các khoảng (-3;-1) và (-1;0).

Khi x tăng từ 0 đến 2 thì đồ thị đi xuống nên hàm số nghịch biến trên (0;2).

lê phương thảo
Xem chi tiết
myyyy
Xem chi tiết
myyyy
24 tháng 9 2023 lúc 19:23

help

Nguyễn Lê Phước Thịnh
Xem chi tiết
Lê Thị Thục Hiền
10 tháng 10 2021 lúc 8:01

a) Đk:\(x\in R\)

TH1:Xét \(x\in\left(3;+\infty\right)\)

Lấy \(x_1;x_2\in\left(3;+\infty\right)\) thỏa mãn \(x_1\ne x_2\)

Xét \(I=\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{2x_1^2-4x_1+3-\left(2x_2^2-4x_2+3\right)}{x_1-x_2}\)\(=2\left(x_1+x_2\right)-4\)

Do \(x_1;x_2\in\left(3;+\infty\right)\)\(\Rightarrow2\left(x_1+x_2\right)>12\Leftrightarrow2\left(x_1+x_2\right)-4>8>0\)

\(\Rightarrow I>0\)

Hàm đồng biến trên \(\left(3;+\infty\right)\)

TH2:Xét \(x\in\left(-10;1\right)\)

Lấy \(x_1;x_2\in\left(-10;1\right):x_1\ne x_2\)

Xét \(I=2\left(x_1+x_2\right)-4\)

Do \(x_1< 1;x_2< 1\Rightarrow2\left(x_1+x_2\right)< 4\Rightarrow I=2\left(x_1+x_2\right)-4< 0\)

Hàm nb trên khoảng \(\left(-10;1\right)\)

b)Làm tương tự,hàm nb trên \(\left(1;+\infty\right)\) và đb trên \(\left(-10;-2\right)\)

c)Đk: \(x\in R\backslash\left\{2\right\}\)

=>Hàm số xác định trên \(\left(-\infty;2\right)\)

Lấy \(x_1;x_2\in\left(-\infty;2\right):x_1\ne x_2\)

Xét \(I=\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{\dfrac{x_1}{x_1-2}-\dfrac{x_2}{x_2-2}}{x_1-x_2}=\dfrac{-2}{\left(x_1-2\right)\left(x_2-2\right)}\)

Do \(x_1;x_2< 2\Rightarrow\left(x_1-2\right)\left(x_2-2\right)>0\)

\(\Rightarrow I=-\dfrac{2}{\left(x_1-2\right)\left(x_2-2\right)}< 0\)

Hàm nb trên ​\(\left(-\infty;2\right)\)

d)\(I=\dfrac{1}{\left(x_1+1\right)\left(x_2+1\right)}\)

Hàm đb trên \(\left(-1;+\infty\right)\) ; \(\left(-3;-2\right)\)

e)TXĐ:D=R

Lấy \(x_1;x_2\in\left(0;+\infty\right):x_1< x_2\)

​​\(T=f\left(x_1\right)-f\left(x_2\right)=x_1^{2020}+x_1^2-3-x_2^{2020}-x_2^2+3=x_1^{2020}-x_2^{2020}+x_1^2-x_2^2\)

Do \(x_1< x_2\Rightarrow x_1^{2020}< x_2^{2020};x_1^2< x_2^2\)

\(\Rightarrow T=x_1^{2020}-x_2^{2020}+x_1^2-x_2^2< 0\)

Hàm đb trên \(\left(0;+\infty\right)\)

Nguyễn Trần Thành Đạt
Xem chi tiết
Hà Quang Minh
30 tháng 9 2023 lúc 9:44

Vẽ đồ thị \(y = 3x + 1;y =  - 2{x^2}\)

a) Trên \(\mathbb{R}\), đồ thị \(y = 3x + 1\) đi lên từ trái sang phải, như vậy hàm số \(y = 3x + 1\) đồng biến trên \(\mathbb{R}\)

b) Trên khoảng \(\left( { - \infty ;0} \right)\), đồ thị \(y =  - 2{x^2}\)đi lên từ trái sang phải với mọi \(x \in \left( { - \infty ;0} \right)\) , như vậy hàm số đồng biến trên \(\left( { - \infty ;0} \right)\)

Trên khoảng \(\left( {0; + \infty } \right)\), đồ thị \(y =  - 2{x^2}\)đi xuống từ trái sang phải với mọi \(x \in \left( {0; + \infty } \right)\) , như vậy hàm số nghịch biến trên \(\left( {0; + \infty } \right)\)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
23 tháng 9 2023 lúc 11:23

a) Tập xác định \(D = \mathbb{R}\backslash \left\{ 0 \right\}\).

Lấy \({x_1},{x_2} \in \left( {0; + \infty } \right)\) sao cho \({x_1} < {x_2}\).

Xét \(f\left( {{x_1}} \right) - f\left( {{x_2}} \right) = \frac{1}{{{x_1}}} - \frac{1}{{{x_2}}} = \frac{{{x_2} - {x_1}}}{{{x_1}{x_2}}}\)

Do \({x_1} < {x_2}\) nên \({x_2} - {x_1} > 0\)

\({x_1},{x_2} \in \left( {0; + \infty } \right) \Rightarrow {x_1}{x_2} > 0\)

\( \Rightarrow f\left( {{x_1}} \right) - f\left( {{x_2}} \right) > 0 \Leftrightarrow f\left( {{x_1}} \right) > f\left( {{x_2}} \right)\)

Vậy hàm số nghịch biến trên \(\left( {0; + \infty } \right)\).

b) Lấy \({x_1},{x_2} \in \left( { - \infty ;0} \right)\) sao cho \({x_1} < {x_2}\).

Xét \(f\left( {{x_1}} \right) - f\left( {{x_2}} \right) = \frac{1}{{{x_1}}} - \frac{1}{{{x_2}}} = \frac{{{x_2} - {x_1}}}{{{x_1}{x_2}}}\)

Do \({x_1} < {x_2}\) nên \({x_2} - {x_1} > 0\)

\({x_1},{x_2} \in \left( { - \infty ;0} \right) \Rightarrow {x_1}{x_2} > 0\)(Cùng dấu âm nên tích cũng âm)

\( \Rightarrow f\left( {{x_1}} \right) - f\left( {{x_2}} \right) > 0 \Leftrightarrow f\left( {{x_1}} \right) > f\left( {{x_2}} \right)\)

Vậy hàm số nghịch biến trên \(\left( { - \infty ;0} \right)\).