Tìm nghiệm của phương trình: \(tan3x.tanx=1\) trên đoạn \(\left[0;2\pi\right]\)
Cho phương trình: \(^{x^2-2\left(m+1\right)x-\left(m+2\right)=0}\)
a) giải phương trình khi m=-2
b) tìm điều kiện của m để phương trình trên có 1 nghiệm x1=2
c) Tìm điều kiện của m để pt trên có nghiệm kép
Mong giúp đỡ
a) Thay m=-2 vào pt:
\(x^2-2.\left(-2+1\right).x-\left(-2+2\right)=0\\ \Leftrightarrow x^2+2x=0\\ \Leftrightarrow x.\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
Với m= -2 => S= {-2;0}
b) Để phương trình trên có 1 nghiệm x1=2:
<=> 22 -2.(m+1).2-(m+2)=0
<=> 4-4m -4 -m-2=0
<=> -5m=2
<=>m=-2/5
c) ĐK của m để pt trên có nghiệm kép:
\(\Delta'=0\\ \Leftrightarrow\left(m+1\right)^2+1.\left(m+2\right)=0\\ \Leftrightarrow m^2+3m+3=0\)
Vô nghiệm.
Cho hai phương trình \(2x - 4 = 0\) và \(\left( {x - 2} \right)\left( {{x^2} + 1} \right) = 0\).
Tìm và so sánh tập nghiệm của hai phương trình trên.
Ta có:
Tập nghiệm của phương trình là \({S_1} = \left\{ 2 \right\}\)
\(\left( {x - 2} \right)\left( {{x^2} + 1} \right) = 0\; \Leftrightarrow x - 2 = 0\; \Leftrightarrow x = 2\)
Tập nghiệm của phương trình là \({S_2} = \left\{ 2 \right\}\)
Vậy tập nghiệm của 2 phương trình là tương đương.
Tìm tất cả các giá trị của m để phương trình \(sin2x=2m\) có hai nghiệm phân biệt trên đoạn \(\left[0;\pi\right]\)
A. \(0\le x< \dfrac{1}{2}\) B. \(0\le x< 1\) C. \(0\le x\le\dfrac{1}{2}\) D. \(0\le x\le1\)
Không có đáp án đúng. Theo đáp án thì $m=0$ thì $\sin 2x=2m$ có 2 nghiệm pb thuộc $[0;\pi]$
Tức là $\sin 2x=0$ có 2 nghiệm pb $[0;\pi]$. Mà pt này có 3 nghiệm lận:
$x=0$
$x=\frac{1}{2}\pi$
$x=\pi$
Số nghiệm của phương trình sinx = 0 trên đoạn \(\left[ {0;10\pi } \right]\) là:
A.10
B.6
C.5
D.11
Ta có
\(\begin{array}{l}\sin x{\rm{ }} = {\rm{ }}0\\ \Leftrightarrow \sin x{\rm{ }} = {\rm{ sin 0}}\\ \Leftrightarrow x{\rm{ }} = {\rm{ }}k\pi ;k \in Z\end{array}\)
Mà \(x \in \left[ {0;10\pi } \right]\) nên
\(\begin{array}{l}0 \le k\pi \le 10\pi \\ \Rightarrow 0 \le k \le 10\end{array}\)
Lại có \(k \in Z\) suy ra \(k \in \left\{ {0;1;2;3;4;5;6;7;8;9;10} \right\}\)
Vậy phương trình đã cho có số nghiệm là 11.
Chọn D
Số nghiệm của phương trình cosx = 0 trên đoạn \(\left[ {0;10\pi } \right]\) là
A.5
B.9
C.10
D.11
Ta có
\(\begin{array}{l}cosx{\rm{ }} = {\rm{ }}0\\ \Leftrightarrow cosx{\rm{ }} = {\rm{ cos}}\frac{\pi }{2}\\ \Leftrightarrow x{\rm{ }} = {\rm{ }}\frac{\pi }{2} + k\pi ;k \in Z\end{array}\)
Mà \(x \in \left[ {0;10\pi } \right]\) nên
\(\begin{array}{l}0 \le \frac{\pi }{2} + k\pi \le 10\pi \\ \Rightarrow - 0,5 \le k \le 9,5\end{array}\)
Lại có \(k \in Z\) suy ra \(k \in \left\{ {0;1;2;3;4;5;6;7;8;9} \right\}\)
Vậy phương trình đã cho có số nghiệm là 10.
Chọn C
Cho phương trình: \(x^2-2\left(3m+2\right)x+2m^2-3m+5=0\)
a. Giải phương trình với m = -2
b. Tìm các giá trị của m để phương trình trên có một trong các nghiệm bằng 1
c. Tìm các giá trị của m để phương trình trên có nghiệm kép.
Số điểm biểu diễn các nghiệm của phương trình sin3x - cos3x + căn3 = 0 trên đường tròn lượng giác?
Nghiệm của phương trình sinx = căn2 Phương trình sin2x = (căn3)/2 có bao nhiêu nghiệm trên đoạn [-pi; 2pi]
Trong mặt phẳng tọa độ Oxy Tìm ảnh đường tròn C: x² + y² - 4y + 6y - 12. Qua phép đồng dạng có được bằng cách thực hiện liên tiếp phép quay tâm O góc quay 90 độ và phép vị tự tâm O tỉ số k = 2
Cho hai phương trình \(x^2-8x+4m=0\left(1\right)\) và x\(^2+X-4m\)=0 (2)
a) Tìm m để hai phương trình có nghiệm chung.
b) Tìm m để một nghiệm của phương trình (1) gấp đôi một nghiệm của phương trình (2).
Cho phương trình sinx 1 + cos x = 0 . Gọi T là tập hợp tất cả các nghiệm của phương trình trên đoạn [0;2018π]. Tìm số phần tử của tập T.
A. 2019.
B. 1009.
C. 1010
D. 2018