Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Nguyệt
Xem chi tiết
Nguyễn Trần Thành Đạt
13 tháng 3 2021 lúc 13:14

a) Thay m=-2 vào pt:

\(x^2-2.\left(-2+1\right).x-\left(-2+2\right)=0\\ \Leftrightarrow x^2+2x=0\\ \Leftrightarrow x.\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

Với m= -2 => S= {-2;0}

b) Để phương trình trên có 1 nghiệm x1=2:

<=> 22 -2.(m+1).2-(m+2)=0

<=> 4-4m -4 -m-2=0

<=> -5m=2

<=>m=-2/5

c) ĐK của m để pt trên có nghiệm kép:

\(\Delta'=0\\ \Leftrightarrow\left(m+1\right)^2+1.\left(m+2\right)=0\\ \Leftrightarrow m^2+3m+3=0\)

Vô nghiệm.

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
21 tháng 9 2023 lúc 23:07

Ta có:

Tập nghiệm của phương trình là \({S_1} = \left\{ 2 \right\}\)

\(\left( {x - 2} \right)\left( {{x^2} + 1} \right) = 0\; \Leftrightarrow x - 2 = 0\; \Leftrightarrow x = 2\)

Tập nghiệm của phương trình là \({S_2} = \left\{ 2 \right\}\)

Vậy tập nghiệm của 2 phương trình là tương đương.

Kuramajiva
Xem chi tiết
Akai Haruma
28 tháng 10 2021 lúc 8:35

Không có đáp án đúng. Theo đáp án thì $m=0$ thì $\sin 2x=2m$ có 2 nghiệm pb thuộc $[0;\pi]$

Tức là $\sin 2x=0$ có 2 nghiệm pb $[0;\pi]$. Mà pt này có 3 nghiệm lận:

$x=0$

$x=\frac{1}{2}\pi$

$x=\pi$

 

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
21 tháng 9 2023 lúc 16:06

Ta có

\(\begin{array}{l}\sin x{\rm{ }} = {\rm{ }}0\\ \Leftrightarrow \sin x{\rm{ }} = {\rm{ sin 0}}\\ \Leftrightarrow x{\rm{ }} = {\rm{ }}k\pi ;k \in Z\end{array}\)

Mà \(x \in \left[ {0;10\pi } \right]\) nên

 \(\begin{array}{l}0 \le k\pi  \le 10\pi \\ \Rightarrow 0 \le k \le 10\end{array}\)

Lại có \(k \in Z\) suy ra \(k \in \left\{ {0;1;2;3;4;5;6;7;8;9;10} \right\}\)

Vậy phương trình đã cho có số nghiệm là 11.

Chọn D

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
21 tháng 9 2023 lúc 16:06

Ta có

\(\begin{array}{l}cosx{\rm{ }} = {\rm{ }}0\\ \Leftrightarrow cosx{\rm{ }} = {\rm{ cos}}\frac{\pi }{2}\\ \Leftrightarrow x{\rm{ }} = {\rm{ }}\frac{\pi }{2} + k\pi ;k \in Z\end{array}\)

Mà \(x \in \left[ {0;10\pi } \right]\) nên

 \(\begin{array}{l}0 \le \frac{\pi }{2} + k\pi  \le 10\pi \\ \Rightarrow  - 0,5 \le k \le 9,5\end{array}\)

Lại có \(k \in Z\) suy ra \(k \in \left\{ {0;1;2;3;4;5;6;7;8;9} \right\}\)

Vậy phương trình đã cho có số nghiệm là 10.

Chọn C

Đỗ ĐứcANh
Xem chi tiết
HT2k02
11 tháng 4 2021 lúc 11:28

undefined

NN Official•
Xem chi tiết
....
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 10 2017 lúc 2:56