-x2+x+m2+2m+3=0.tìm m thỏa mãn x13 +x13 = 34
Cho phương trình bậc hai: x2 + 2mx + m2 + 2m + 3 = 0, với là m là tham số. Tìm các giá trị của m để phương trình có hai nghiệm phân biệt x1, x2 thỏa mãn: x13+ x23 = 108
Giúp mình với ạ
Phương trình đã cho có nghiệm phân biệt khi :
\(\Delta'=m^2-\left(m^2+2m+3\right)=-2m-3>0\)
\(\Leftrightarrow m< -\dfrac{3}{2}\)(*)
Hệ thức Viette : \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=m^2+2m+3\end{matrix}\right.\)
Có \(x_1^3+x_2^3=108\)
\(\Leftrightarrow\left(x_1+x_2\right).\left(x_1^2-x_1x_2+x_2^2\right)=108\)
\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=108\)
\(\Leftrightarrow-8m^3+6m\left(m^2+2m+3\right)=108\)
\(\Leftrightarrow m^3-6m^2-9m+54=0\)
\(\Leftrightarrow\left(m-6\right).\left(m-3\right).\left(m+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=6\\m=\pm3\end{matrix}\right.\)
Kết hợp (*) được m = -3 thỏa mãn
Tìm các giá trị của m để phương trình x 2 – 2(m + 1)x + 2m = 0 có hai nghiệm x 1 ; x 2 thỏa mãn x 1 3 + x 2 3 = 8
A. m = 1
B. m = −1
C. m = 0
D. m > −1
Phương trình x2 – 2(m + 1)x + 2m = 0 có a = 1 ≠ 0 và
∆ ' = ( m + 1 ) 2 – 2 m = m 2 + 1 > 0 ; m nên phương trình luôn có hai nghiệm x 1 ; x 2
Theo hệ thức Vi-ét ta có x 1 + x 2 = 2 m + 1 x 1 . x 2 = 2 m
Xét x 1 3 + x 2 3 = 8 ( x 1 + x 2 ) 3 − 3 x 1 . x 2 ( x 1 + x 2 ) = 8
⇔ [ 2 ( m + 1 ) ] 3 – 3 . 2 m . [ 2 ( m + 1 ) ] = 8
8 ( m 3 + 3 m 2 + 3 m + 1 ) – 6 m ( 2 m + 2 ) = 8 ⇔ 8 m 3 + 12 m 2 + 12 m = 0
⇔ m ( 2 m 2 + 3 m + 3 ) = 0
⇔ m = 0 2 m 2 + 3 m + 3 = 0
Phương trình 2 m 2 + 3 m + 3 = 0 c ó ∆ 1 = 3 2 – 4 . 2 . 3 = − 15 < 0 nên phương trình này vô nghiệm
Vậy m = 0 là giá trị cần tìm
Đáp án: C
Cho phương trình: x2 - 2x - m2 + 1 = 0. Tìm m để pt có hai nghiệm phân biệt x1, x2 thỏa mãn (2x1 - x2).(x13 - 2x12 - m2x1 + 2x2)= -3
\(\Delta'=1+m^2-1=m^2>0\Rightarrow\) pt có 2 nghiệm pb khi \(m\ne0\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=-m^2+1\end{matrix}\right.\)
Do \(x_1\) là nghiệm của pt nên:
\(x_1^2-2x_1-m^2+1=0\Rightarrow x_1^3-2x_1^2-m^2x_1+x_1=0\)
\(\Rightarrow x_1^3-2x_1^2-m^2x_1=-x_1\)
Thế vào bài toán:
\(\left(2x_1-x_2\right)\left(-x_1+2x_2\right)=-3\)
\(\Leftrightarrow-2x_1^2-2x_2^2+5x_1x_2=-3\)
\(\Leftrightarrow-2\left(x_1+x_2\right)^2+9x_1x_2=-3\)
\(\Leftrightarrow-8+9\left(-m^2+1\right)=-3\)
\(\Leftrightarrow m^2=\dfrac{4}{9}\Rightarrow m=\pm\dfrac{2}{3}\)
Cho phương trình bậc hai x2 + 2mx + m2+2m + 3 = 0, với m là tham số. Tìm các giá trị của m để phương trình có hai nghiệm phân biệt X1. X1, thỏa: x13 + x23 = 108.
Δ=(2m)^2-4(m^2+2m+3)
=4m^2-4m^2-8m-12=-8m-12
Để PT có 2 nghiệm pb thì -8m-12>0
=>-8m>12
=>m<-3/2
x1^3+x2^3=108
=>(x1+x2)^3-3x1x2(x1+x2)=108
=>(-2m)^3-3(m^2+2m+3)*(-2m)=108
=>-8m^3+6m(m^2+2m+3)=108
=>-8m^3+6m^3+12m^2+18m-108=0
=>-2m^3+12m^2+18m-108=0
=>-2m^2(m-6)+18(m-6)=0
=>(m-6)(-2m^2+18)=0
=>m=-3
cho phương trình x2 + 2x +m -1 với m là tham số
a giải phương trinh với m=2
b tìm giá trị của m để phương trình đã cho có 2 nghiệm phân biệt x1và x2 thỏa mãn x13 + x13 - 6x1x2= 4(m-m2)
a) x2 + 2x + m - 1 = 0 (1)
Với m = 2 ta có (1) trở thành
x2 + 2x + 1 = 0
Có \(\Delta=2^2-4.1.1=0\) nên phương trình nghiệm kép
\(x_1=x_2=-1\)
b) (1) 2 nghiệm phân biệt khi \(\Delta=2^2-4.\left(m-1\right)=8-4m>0\Leftrightarrow m< 2\)
Áp dụng hệ thức Viete cho (1) ta có
\(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1x_2=m-1\end{matrix}\right.\)
Khi đó \(x_1^3+x_2^3-6x_1x_2=4.\left(m-m^2\right)\)
\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2.\left(x_1+x_2\right)-6x_1x_2=4\left(m-m^2\right)\)
\(\Leftrightarrow\left(-2\right)^3-3.\left(-2\right).\left(m-1\right)-6.\left(m-1\right)=4.\left(m-m^2\right)\)
\(\Leftrightarrow4m^2-4m-8=0\Leftrightarrow\left(m-2\right).\left(4m+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=2\left(\text{loại}\right)\\m=-1\left(tm\right)\end{matrix}\right.\)
Vậy m = -1 thì thỏa mãn ycbt
Cho phương trình x2 +6x + 6m - m2 = 0( m là tham số). Tìm m để phương trình đã cho có 2 nghiệm thỏa mãn: x13 - x23 + 2x12 + 12x1 + 72 = 0
Giúp mình với ạ
Là sao em? Phải có yêu cầu cụ thể gì chứ?
Lời giải:
Để pt có 2 nghiệm thì:
$\Delta'=9-(6m-m^2)\geq 0\Leftrightarrow m^2-6m+9\geq 0$
$\Leftrightarrow (m-3)^2\geq 0\Leftrightarrow m\in\mathbb{R}$.
Với $x_1,x_2$ là nghiệm của pt. Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=-6\\ x_1x_2=6m-m^2\end{matrix}\right.\)
Khi đó:
\(x_1^3-x_2^3+2x_1^2+12x_1+72=0\)
\(\Leftrightarrow x_1^3-(-6-x_1)^3+2x_1^2+12x_1+72=0\)
\(\Leftrightarrow x_1^3+10x_1^2+60x_1+144=0\)
\(\Leftrightarrow (x_1+4)(x_1^2+6x_1+36)=0\)
\(\Leftrightarrow x_1=-4\) (dễ thấy \(x_1^2+6x_1+36>0\) )
\(\Leftrightarrow x_2=-6-x_1=-2\)
\(\Rightarrow 6m-m^2=x_1x_2=8\)
\(\Leftrightarrow m^2-6m+8=0\Leftrightarrow (m-4)(m-2)=0\)
\(\Leftrightarrow m=4; m=2\) (đều thỏa mãn)
Tìm m để phương trình: x 2 + 5 x + 3 m − 1 = 0 (x là ẩn, m là tham số) có hai nghiệm x 1 ; x 2 thỏa mãn x 1 3 − x 2 3 + 3 x 1 x 2 = 75 .
Để PT có hai nghiệm x 1 ; x 2 thì: Δ = 25 − 12 m + 4 ≥ 0 ⇔ 29 − 12 m ≥ 0 ⇔ m ≤ 29 12
Ta có: x 1 3 − x 2 3 + 3 x 1 x 2 = 75 ⇔ ( x 1 − x 2 ) [ ( x 1 + x 2 ) 2 − x 1 x 2 ] + 3 x 1 x 2 − 75 = 0 (*)
Theo định lý Vi-et ta có: x 1 + x 2 = − 5 x 1 x 2 = 3 m − 1 thay vào (*) ta được
( x 1 − x 2 ) ( 26 − 3 m ) + 3 ( 3 m − 26 ) = 0 ⇔ ( x 1 − x 2 − 3 ) ( 26 − 3 m ) = 0 ⇔ m = 26 3 x 1 − x 2 − 3 = 0
Kết hợp với điều kiện thì m = 26/3 không thỏa mãn.
Kết hợp x 1 − x 2 − 3 = 0 với hệ thức Vi - et ta có hệ: x 1 − x 2 − 3 = 0 x 1 + x 2 = − 5 x 1 x 2 = 3 m − 1 ⇔ x 1 = − 1 x 2 = − 4 m = 5 3 ( t / m ) .
Vậy m = 5/3 là giá trị cần tìm.
Tìm các giá trị của m để phương trình x 2 − m x – m − 1 = 0 có hai nghiệm x 1 ; x 2 thỏa mãn x 1 3 + x 2 3 = − 1
A. m = 1
B. m = −1
C. m = 0
D. m > −1
Phương trình x 2 − mx – m − 1 = 0 có a = 1 ≠ 0 và = m 2 – 4(m – 1)
= ( m – 2 ) 2 ≥ 0 ; m nên phương trình luôn có hai nghiệm x 1 ; x 2
Theo hệ thức Vi-ét ta có
Xét
x 1 3 + x 2 3 = − 1 ⇔ ( x 1 + x 2 ) 3 − 3 x 1 . x 2 ( x 1 + x 2 ) = − 1 ⇔ m 3 – 3 m ( - m – 1 ) = − 1
⇔ m 3 + 3 m 2 + 3 m + 1 = 0 ⇔ ( m + 1 ) 3 = 0 ⇔ m = − 1
Vậy m = −1 là giá trị cần tìm.
Đáp án: B
Cho phương trình: x2-3x+m-2=0 (1). Tìm m để phương trình (1) có hai nghiệm x1, x2 thỏa mãn: x13-x23+9x1x2=81.
13) Cho pt x2 - 2x + m +3 =0
a) Tìm để pt có nghiệm x = 3 . Tìm nghiệm còn lại
b) Tìm m để pt có 2 nghiệm phân biệt thỏa mãn x13 + x23 = 8
a: Khi x=3 thì pt sẽ là:
3^2-2*3+m+3=0
=>m-6+9+3=0
=>m+6=0
=>m=-6
x1+x2=2
=>x2=2-3=-1
b:
Δ=(-2)^2-4(m+3)
=4-4m-12
=-4m-8
Để phương trình có hai nghiệm phân biệt thì:
-4m-8>=0
=>m<=-2
x1^3+x2^3=8
=>(x1+x2)^3-3x1x2(x1+x2)=8
=>2^3-3*2(m+3)=8
=>6(m+3)=0
=>m+3=0
=>m=-3(nhận)