Cho \(\Delta\)ABC cân tại A. Gọi M, D, E lần lượt là trung điểm của BC, AB, AC.
a/ Chứng minh: \(\Delta\)AMB = \(\Delta\)ACM.
b/ Chứng minh: DE \(\perp\) AM.
Cho Δ ABC cân tại A, lấy điểm M là trung điểm của đoạn BC
a) Chứng minh: ΔABM = ΔACM
b) Vẽ MD ⊥ AB (D thuộc AB) và kẻ ME ⊥ AC (E thuộc AC)
Chứng minh : △ADE cân và DE //BC
c) Qua D vẽ đường thẳng // với AM, đường thẳng này cắt EM tại K
Chứng minh: EK = 2MD
a) Xét \(\Delta ABM,\Delta ACM\) có:
\(AB=AC\) (\(\Delta ABC\) cân tại A)
\(BM=MC\) (M là trung điểm của BC)
\(AM:Chung\)
=> \(\Delta ABM=\Delta ACM\left(c.c.c\right)\) (*)
b) Xét \(\Delta BDM,\Delta CEM\) có :
\(\widehat{DBM}=\widehat{ECM}\) (Tam giác ACB cân tại A)
\(BM=MC\) (M là trung điểm của BC)
\(\widehat{BDM}=\widehat{CEM}\left(=90^o\right)\)
=> \(\Delta BDM=\Delta CEM\) (cạnh huyền - góc nhọn)
=> \(DM=EC\) (2 cạnh tương ứng)
=> \(\widehat{DAM}=\widehat{EAM}\)
Xét \(\Delta ADM,\Delta AEM\) có :
\(\widehat{ADM}=\widehat{AEM}\left(=90^{^o}\right)\)
\(DM=CE\left(cmt\right)\)
\(\widehat{DAM}=\widehat{EAM}\) (từ *)
=> \(\Delta ADM=\Delta AEM\left(g.c.g\right)\)
=> AD = AE (2 cạnh tương ứng)
Do đó : \(\Delta ADE\) cân tại A => đpcm
Xét \(\Delta ADE\) cân tại A có :
\(\widehat{ADE}=\dfrac{180^{^O}-\widehat{A}}{2}\left(1\right)\)
Xét \(\Delta ABC\) cân tại A(gt) có :
\(\widehat{ABC}=\dfrac{180^{^O}-\widehat{A}}{2}\left(2\right)\)
Từ (1) và (2) => \(\widehat{ADE}=\widehat{ABC}\left(=\dfrac{180^O-\widehat{A}}{2}\right)\)
Mà thấy : 2 góc này ở vị trí đồng vị
Do đó : \(DE//BC\left(đpcm\right)\)
c) Ta có : \(DM=EM\left(\Delta BDM=\Delta CEM-cmt\right)\) (3)
Ta dễ dàng chứng minh được : \(\Delta CEM=\Delta KBM\)
Từ đó suy ra : KM = ME (2 cạnh tương ứng)
\(\Leftrightarrow EK=2EM\) (4)
Từ (3) và (4) => \(EK=2MD\)
=> đpcm.
Cho tam giác ABC vuông tại A có AB = AC. Gọi M là trung điểm của BC, D là trung điểm của cạnh AC.
a) Chứng minh rằng: ΔAMB=ΔAMC và AM⊥BC;
b) Từ A kẻ đường thẳng vuông góc với BD, cắt BC tại E. Trên tia đối của tia DE lấy điểm F sao cho DF = DE. Chứng minh rằng: ΔADF=ΔCDE, từ đó suy ra: AF∥CE;
c) Từ C dựng đường thẳng vuông góc với AC, cắt AE tại G. Chứng minh rằng: ΔBAD=ΔACG;
d) Chứng minh rằng: AB = 2CG
Cho ΔABC có AB = AC. Gọi M là trung điểm của BC. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho AD = AE.
a. Chứng minh ΔABM = ΔACM
b. Chứng minh AM ⊥ BC
c. Chứng minh ΔADM = ΔAEM
Giúp mk vs, mk dg cần gấp lắm!!!
a, Xét tam giác ABM và tam giác ACM có:
AM cạnh chung
A1=A2
AB=AC(gt)
=>tam giác ABM=tam giác ACM(c.g.c)
b,Vì ABM=ACM(cmt)
=>M1=M2(hai góc tương ứng)
=>M1+M2=180(hai góc kề bù)
=>M1=M2=180độ phần 2=90
=>AM vuông góc với BC
c, Xét tg ADM và tg AEM có:
AM cạnh chung
A1=A2
AD=AE
=>tg ADM=tg AEM(c.g.c)
Gửi nhầm chỗ ko sao đâu bạn
miễn sao bạn có bài làm
mình gửi có hơi muộn ko bạn
Cho \(\Delta ABC\) cân tại A, lấy điểm M là trung điểm của cạnh BC. Trên tia đối của MA lấy điểm D sao cho MA = MD
Chứng minh:
a) \(\Delta AMB\) và \(\Delta DMC\)
b) AC // BD
c) Kẻ AH \(\perp\) BC, DK \(\perp\) BC ( H, K \(\in\) BC ) Chứng minh BK = CH
Xét △AMD và △DMC
AB=AC(giả thuyết)
Cạnh AM là cạnh chung
BM= CM ( M là trung điểm của cạnh BC)
=> △AMD=△DMC
Sorry bạn nhé mk chỉ bt làm câu a thui ☹
Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=AB
a) Chứng minh: DB=DM
b) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)
c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàng
Câu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BE
a) Chứng minh: DA=DE
b) Tia ED cắt BA tại F. Chứng minh \(\Delta DAF=\Delta DEC\)
c) Gọi H là trung diểm của FC. Chứng minh ba điểm B,D,H thẳng hàng
Câu 3. Cho \(\Delta ABC\)cân tại A. Kẻ AH vuông góc với BC (\(H\in BC\))
a) Chứng minh: HB=HC
b) Kẻ \(HD\perp AB\left(D\in AB\right)\)và \(HE\perp AC\left(E\in AC\right)\). Chứng minh \(\Delta HDE\)cân
Câu 4. Cho tam giác ABC vuông tại B, đường phân giác \(AD\left(D\in BC\right)\). Kẻ DE vuông góc với \(AC\left(E\in AC\right)\)
a) Chứng minh: \(\Delta ABD=\Delta AED;\)
b) BE là đường trung trực của đoạn thẳng AD
c) Gọi F là giao điểm của hai đường thẳng AB và ED Chứng minh BF=EC
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
Câu 4:
a: Xét ΔABD vuông tại B và ΔAED vuông tại E có
AD chung
góc BAD=góc EAD
Do đó: ΔBAD=ΔEAD
b: Ta có: AB=AE
DB=DE
Do đó: AD là đường trung trực của BE
c: Xét ΔBDF vuông tại B và ΔEDC vuông tại E có
DB=DE
góc BDF=góc EDC
Do đó: ΔBDF=ΔEDC
Suy ra: BF=EC
Cho ΔABC có AB = AC. Gọi M là trung điểm của BC. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho AD = AE.
a. Chứng minh ΔABM = ΔACM
b. Chứng minh AM ⊥ BC
c. Chứng minh ΔADM = ΔAEM
Giúp mk vs, mk dg cần gấp lắm!!!
a, Vì M là trung điểm cạnh BC => MB = MC
Xét △ABM và △ACM có:
AB = AC (gt)
MB = MC (cmt)
AM chung
=> △ABM = △ACM (c-c-c)
b, Vì △ABM = △ACM (cmt)
=> \(\widehat{AMB}=\widehat{AMC}\) (2 góc tương ứng)
mà \(\widehat{AMB}+\widehat{AMC}=180^o\)
=> \(2\widehat{AMB}=180^o\)
=> \(\widehat{AMB}=90^o\)
=> AM ⊥ BC
c, Xét △ADM và △AEM có:
AD = AE(gt)
\(\widehat{A_1}=\widehat{A_2}\) (do ABM = ACM)
AM chung
=> △ADM = △AEM (c-g-c)
Cho ΔABC có AB=AC, M là trung điểm của BC
a) Chứng minh ΔAMB=ΔAMC. Suy ra góc AMB=AMC
b)Chứng minh AM\(\perp\)BC
c)Trên cạnh AB, AC lần lượt lấy điểm H và điểm K sao cho AH=AK. Chứng minh ΔAHM=ΔAKM và MA là tia phân giác của góc HMK
d) Chứng minh: ΔBHM=ΔCKM
Hình vẽ:
Giải:
a) Xét tam giác AMB và tam giác AMC, có:
\(AB=AC\left(gt\right)\)
\(MB=MC\) (M là trung điểm BC)
AM là cạnh chung
\(\Rightarrow\Delta AMB=\Delta AMC\left(c.c.c\right)\)(đpcm)
\(\Leftrightarrow\widehat{AMB}=\widehat{AMC}\) (Hai góc tương ứng)
b) Ta có: \(\widehat{AMB}=\widehat{AMC}\)
Mà \(\widehat{AMB}+\widehat{AMC}=180^0\) (Hai góc kề bù)
\(\Leftrightarrow\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)
\(\Leftrightarrow AM\perp BC\left(đpcm\right)\)
c) Xét tam giác AHM và tam giác AKM, có:
\(AH=AK\left(gt\right)\)
\(\widehat{HAM}=\widehat{KAM}\) (\(\Delta AMB=\Delta AMC\))
AM là cạnh chung
\(\Rightarrow\Delta AHM=\Delta AKM\left(c.g.c\right)\)(đpcm)
\(\Leftrightarrow\widehat{AMH}=\widehat{AMK}\) (Hai cạnh tương ứng)
\(\Leftrightarrow\) MA là tia phân giác của \(\widehat{HMK}\) (đpcm)
d) Ta có: \(AB=AC\left(gt\right)\)
Lại có: \(AH=AK\left(gt\right)\)
Lấy vễ trừ theo vế, ta được:
\(AB-AH=AC-AK\)
\(\Leftrightarrow BH=CK\)
Xét tam giác BHM và tam giác CKM, có:
\(BH=CK\) (Chứng minh trên)
\(HM=HK\left(\Delta AHM=\Delta AKM\right)\)
\(MB=MC\) (M là trung điểm BC)
\(\Rightarrow\Delta BHM=\Delta CKM\left(c.c.c\right)\) (đpcm)
a.
Xét \(\Delta ABM\) và \(\Delta ACM\) có :
\(AB=AC\left(gt\right)\\ AM\left(chung\right)\\ BM=CM\\ \Rightarrow\Delta ABM=\Delta ACM\left(c-c-c\right)\\ \Rightarrow\widehat{AMB}=\widehat{AMC}\)
b.
\(\Delta ABM=\Delta ACM\\ \Rightarrow\widehat{AMB}=\widehat{AMC}=90^0\\ \Rightarrow AM\perp BC\)
c.
\(\Delta ABM=\Delta ACM\\ \Rightarrow\widehat{BAM}=\widehat{CAM}\)
Xét \(\Delta AHM\) và \(\Delta AKM\) có :
\(AH=AK\left(gt\right)\\ \widehat{HAM}=\widehat{KAM}\left(cmt\right)\\ AM\left(chung\right)\\ \Rightarrow\Delta AHM=\Delta AKM\left(c-g-c\right)\)
\(\Rightarrow\widehat{HMA}=\widehat{KMA}\)
=> MA là tia phân giác góc HMK
d.
AB=AC
AH=AK
=> BH=CK
AB=AC => tg ABC cân tại A
=> góc B = góc C
Xet \(\Delta BHM\) và \(\Delta CKM\) có :
\(BH=CK\left(cmt\right)\\ \widehat{B}=\widehat{C}\\ MB=MC\\ \Rightarrow\Delta BHM=\Delta CKM\left(c-g-c\right)\)
Tm gi EMD v tm giEMG
EM hung
BM=GM
EB=EG
tm giEMD=tm gi EMG
Bài 17: Cho tam giác ABC cân tại A. Gọi M là trung điểm BC.
a, Chứng minh \(\Delta\) ABM =\(\Delta\) ACM
b, Chứng minh AM là phân giác góc BAC và AM vuông góc BC.
c, Lấy E bất kì trên đoạn AM. Chứng minh tam giác EBC cân.
Lời giải:
a.
Do tam giác $ABC$ cân tại $A$ nên $AB=AC$
Xét tam giác $ABM$ và $ACM$ có:
$AB=AC$
$AM$ chung
$BM=CM$ (do $M$ là trung điểm $BC$)
$\Rightarrow \triangle ABM=\triangle ACM$ (c.c.c)
b.
Từ tam giác bằng nhau phần a suy ra $\widehat{BAM}=\widehat{CAM}$. Mà $AM$ nằm giữa $AB, AC$ nên $AM$ là tia phân giác $\widehat{BAC}$
Cũng từ tam giác bằng nhau phần a suy ra:
$\widehat{AMB}=\widehat{AMC}$
Mà $\widehat{AMB}+\widehat{AMC}=\widehat{BMC}=180^0$
$\Rightarrow \widehat{AMB}=180^0:2=90^0$
$\Rightarrow AM\perp BC$
c.
$AM\perp BC, M$ là trung điểm $BC$ nên $AM$ là đường trung trực của $BC$
$\Rightarrow$ mọi điểm $E\in AM$ đều cách đều 2 đầu mút B,C (theo tính chất đường trung trực)
$\Rightarrow EB=EC$
$\Rightarrow \triangle EBC$ cân tại $E$.
Cho \(\Delta ABC\), AB < AC, M là trung điểm của BC. Trên tia AM lấy điểm D sao cho M là trung điểm của AD.
a) Chứng minh: \(\Delta AMC\) = \(\Delta DMB\)
b) Chứng minh: \(\Delta AMB\) = \(\Delta DMC\)
c) Chứng minh: AB = CD và AB // CD
d) Chứng minh: AC = DB và AC // DB
e) Trên cạnh AC lấy điểm H và trên cạch BD lấy điểm K sao AH = DK. Chứng minh 3 điểm H, M, K thẳng hàng.
a: Xét ΔAMC và ΔDMB có
MA=MD
\(\widehat{AMC}=\widehat{DMB}\)(hai góc đối đỉnh)
MC=MB
Do đó: ΔAMC=ΔDMB
b: Xét ΔAMB và ΔDMC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)
MB=MC
Do đó: ΔAMB=ΔDMC
c: Ta có: ΔAMB=ΔDMC
=>AB=DC
Ta có: ΔAMB=ΔDMC
=>\(\widehat{MAB}=\widehat{MDC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//CD
d: ta có: ΔAMC=ΔDMB
=>AC=DB
Ta có: ΔAMC=ΔDMB
=>\(\widehat{MAC}=\widehat{MDB}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AC//BD
e: Xét ΔKDM và ΔHAM có
KD=HA
\(\widehat{KDM}=\widehat{HAM}\)
DM=AM
Do đó: ΔKDM=ΔHAM
=>\(\widehat{KMD}=\widehat{HMA}\)
mà \(\widehat{KMD}+\widehat{KMA}=180^0\)(hai góc kề bù)
nên \(\widehat{HMA}+\widehat{KMA}=180^0\)
=>H,M,K thẳng hàng