Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Võ Nguyễn Nhật Minh
Xem chi tiết
nguyen thi vang
9 tháng 2 2018 lúc 20:20

A B C D E M K

a) Xét \(\Delta ABM,\Delta ACM\) có:

\(AB=AC\) (\(\Delta ABC\) cân tại A)

\(BM=MC\) (M là trung điểm của BC)

\(AM:Chung\)

=> \(\Delta ABM=\Delta ACM\left(c.c.c\right)\) (*)

b) Xét \(\Delta BDM,\Delta CEM\) có :

\(\widehat{DBM}=\widehat{ECM}\) (Tam giác ACB cân tại A)

\(BM=MC\) (M là trung điểm của BC)

\(\widehat{BDM}=\widehat{CEM}\left(=90^o\right)\)

=> \(\Delta BDM=\Delta CEM\) (cạnh huyền - góc nhọn)

=> \(DM=EC\) (2 cạnh tương ứng)

=> \(\widehat{DAM}=\widehat{EAM}\)

Xét \(\Delta ADM,\Delta AEM\) có :

\(\widehat{ADM}=\widehat{AEM}\left(=90^{^o}\right)\)

\(DM=CE\left(cmt\right)\)

\(\widehat{DAM}=\widehat{EAM}\) (từ *)

=> \(\Delta ADM=\Delta AEM\left(g.c.g\right)\)

=> AD = AE (2 cạnh tương ứng)

Do đó : \(\Delta ADE\) cân tại A => đpcm

Xét \(\Delta ADE\) cân tại A có :

\(\widehat{ADE}=\dfrac{180^{^O}-\widehat{A}}{2}\left(1\right)\)

Xét \(\Delta ABC\) cân tại A(gt) có :

\(\widehat{ABC}=\dfrac{180^{^O}-\widehat{A}}{2}\left(2\right)\)

Từ (1) và (2) => \(\widehat{ADE}=\widehat{ABC}\left(=\dfrac{180^O-\widehat{A}}{2}\right)\)

Mà thấy : 2 góc này ở vị trí đồng vị

Do đó : \(DE//BC\left(đpcm\right)\)

c) Ta có : \(DM=EM\left(\Delta BDM=\Delta CEM-cmt\right)\) (3)

Ta dễ dàng chứng minh được : \(\Delta CEM=\Delta KBM\)

Từ đó suy ra : KM = ME (2 cạnh tương ứng)

\(\Leftrightarrow EK=2EM\) (4)

Từ (3) và (4) => \(EK=2MD\)

=> đpcm.

Qanhh pro
Xem chi tiết
lê văn hiền
Xem chi tiết
Nguyễn Minh Huyền
4 tháng 12 2018 lúc 20:27

nhầm chỗ rồi bạn

Nguyễn Phương Trang
5 tháng 12 2018 lúc 21:53

a, Xét tam giác ABM và tam giác ACM có:

AM cạnh chung

A1=A2

AB=AC(gt)

=>tam giác ABM=tam giác ACM(c.g.c)

b,Vì ABM=ACM(cmt)

=>M1=M2(hai góc tương ứng)

=>M1+M2=180(hai góc kề bù)

=>M1=M2=180độ phần 2=90

=>AM vuông góc với BC

c, Xét tg ADM và tg AEM có:

AM cạnh chung

A1=A2

AD=AE

=>tg ADM=tg AEM(c.g.c)

Nguyễn Phương Trang
5 tháng 12 2018 lúc 21:54

Gửi nhầm chỗ ko sao đâu bạn

miễn sao bạn có bài làm

mình gửi có hơi muộn ko bạn

Nguyễn Thị Thu Huyền
Xem chi tiết
Nguyễn Thị Hoài An
28 tháng 12 2023 lúc 20:55

δγΣαγηθλΣϕΩβΔ

59	Phan Mỹ Vân
28 tháng 12 2023 lúc 21:24

Xét △AMD và △DMC

   AB=AC(giả thuyết)

   Cạnh AM là cạnh chung 

   BM= CM ( M là trung điểm của cạnh BC)

=> △AMD=△DMC

Sorry bạn nhé mk chỉ bt làm câu a thui ☹
   

Buì Đức Quân
Xem chi tiết
Trần Hà trang
4 tháng 5 2019 lúc 18:05

Câu a

Xét tam giác ABD và AMD có

AB = AM từ gt

Góc BAD = MAD vì AD phân giác BAM

AD chung

=> 2 tam guacs bằng nhau

Trần Hà trang
4 tháng 5 2019 lúc 18:08

Câu b

Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD

Bd = bm vì 2 tam giác ở câu a bằng nhau

Góc BDE bằng MDC đối đỉnh

=> 2 tam giác bằng nhau

Nguyễn Lê Phước Thịnh
27 tháng 8 2022 lúc 13:11

Câu 4: 

a: Xét ΔABD vuông tại B và ΔAED vuông tại E có

AD chung

góc BAD=góc EAD

Do đó: ΔBAD=ΔEAD
b: Ta có: AB=AE

DB=DE

Do đó: AD là đường trung trực của BE

c: Xét ΔBDF vuông tại B và ΔEDC vuông tại E có

DB=DE

góc BDF=góc EDC

Do đó: ΔBDF=ΔEDC

Suy ra: BF=EC

lê văn hiền
Xem chi tiết
thám tử
4 tháng 12 2018 lúc 21:03

A B C M D E 1 2

a, Vì M là trung điểm cạnh BC => MB = MC

Xét △ABM và △ACM có:

AB = AC (gt)

MB = MC (cmt)

AM chung

=> △ABM = △ACM (c-c-c)

b, Vì △ABM = △ACM (cmt)

=> \(\widehat{AMB}=\widehat{AMC}\) (2 góc tương ứng)

\(\widehat{AMB}+\widehat{AMC}=180^o\)

=> \(2\widehat{AMB}=180^o\)

=> \(\widehat{AMB}=90^o\)

=> AM ⊥ BC

c, Xét △ADM và △AEM có:

AD = AE(gt)

\(\widehat{A_1}=\widehat{A_2}\) (do ABM = ACM)

AM chung

=> △ADM = △AEM (c-g-c)

Lê Trần Khánh Vân
Xem chi tiết
Giang
27 tháng 12 2017 lúc 8:52

Hình vẽ:

A B C M H K

Giải:

a) Xét tam giác AMB và tam giác AMC, có:

\(AB=AC\left(gt\right)\)

\(MB=MC\) (M là trung điểm BC)

AM là cạnh chung

\(\Rightarrow\Delta AMB=\Delta AMC\left(c.c.c\right)\)(đpcm)

\(\Leftrightarrow\widehat{AMB}=\widehat{AMC}\) (Hai góc tương ứng)

b) Ta có: \(\widehat{AMB}=\widehat{AMC}\)

\(\widehat{AMB}+\widehat{AMC}=180^0\) (Hai góc kề bù)

\(\Leftrightarrow\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)

\(\Leftrightarrow AM\perp BC\left(đpcm\right)\)

c) Xét tam giác AHM và tam giác AKM, có:

\(AH=AK\left(gt\right)\)

\(\widehat{HAM}=\widehat{KAM}\) (\(\Delta AMB=\Delta AMC\))

AM là cạnh chung

\(\Rightarrow\Delta AHM=\Delta AKM\left(c.g.c\right)\)(đpcm)

\(\Leftrightarrow\widehat{AMH}=\widehat{AMK}\) (Hai cạnh tương ứng)

\(\Leftrightarrow\) MA là tia phân giác của \(\widehat{HMK}\) (đpcm)

d) Ta có: \(AB=AC\left(gt\right)\)

Lại có: \(AH=AK\left(gt\right)\)

Lấy vễ trừ theo vế, ta được:

\(AB-AH=AC-AK\)

\(\Leftrightarrow BH=CK\)

Xét tam giác BHM và tam giác CKM, có:

\(BH=CK\) (Chứng minh trên)

\(HM=HK\left(\Delta AHM=\Delta AKM\right)\)

\(MB=MC\) (M là trung điểm BC)

\(\Rightarrow\Delta BHM=\Delta CKM\left(c.c.c\right)\) (đpcm)

Ngô Tấn Đạt
27 tháng 12 2017 lúc 9:33

a.

Xét \(\Delta ABM\)\(\Delta ACM\) có :

\(AB=AC\left(gt\right)\\ AM\left(chung\right)\\ BM=CM\\ \Rightarrow\Delta ABM=\Delta ACM\left(c-c-c\right)\\ \Rightarrow\widehat{AMB}=\widehat{AMC}\)

b.

\(\Delta ABM=\Delta ACM\\ \Rightarrow\widehat{AMB}=\widehat{AMC}=90^0\\ \Rightarrow AM\perp BC\)

c.

\(\Delta ABM=\Delta ACM\\ \Rightarrow\widehat{BAM}=\widehat{CAM}\)

Xét \(\Delta AHM\)\(\Delta AKM\) có :

\(AH=AK\left(gt\right)\\ \widehat{HAM}=\widehat{KAM}\left(cmt\right)\\ AM\left(chung\right)\\ \Rightarrow\Delta AHM=\Delta AKM\left(c-g-c\right)\)

\(\Rightarrow\widehat{HMA}=\widehat{KMA}\)

=> MA là tia phân giác góc HMK

d.

AB=AC

AH=AK

=> BH=CK

AB=AC => tg ABC cân tại A

=> góc B = góc C

Xet \(\Delta BHM\)\(\Delta CKM\) có :

\(BH=CK\left(cmt\right)\\ \widehat{B}=\widehat{C}\\ MB=MC\\ \Rightarrow\Delta BHM=\Delta CKM\left(c-g-c\right)\)

Huỳnh Thị Tuyền
27 tháng 12 2017 lúc 15:39

Tm gi EMD v tm giEMG

EM hung

BM=GM

EB=EG

tm giEMD=tm gi EMG

Sỹ Bảo Lê
Xem chi tiết
Akai Haruma
28 tháng 12 2023 lúc 0:28

Lời giải:
a.

Do tam giác $ABC$ cân tại $A$ nên $AB=AC$

Xét tam giác $ABM$ và $ACM$ có:

$AB=AC$

$AM$ chung

$BM=CM$ (do $M$ là trung điểm $BC$)

$\Rightarrow \triangle ABM=\triangle ACM$ (c.c.c)

b.

Từ tam giác bằng nhau phần a suy ra $\widehat{BAM}=\widehat{CAM}$. Mà $AM$ nằm giữa $AB, AC$ nên $AM$ là tia phân giác $\widehat{BAC}$

Cũng từ tam giác bằng nhau phần a suy ra:
$\widehat{AMB}=\widehat{AMC}$

Mà $\widehat{AMB}+\widehat{AMC}=\widehat{BMC}=180^0$

$\Rightarrow \widehat{AMB}=180^0:2=90^0$

$\Rightarrow AM\perp BC$

c.

$AM\perp BC, M$ là trung điểm $BC$ nên $AM$ là đường trung trực của $BC$

$\Rightarrow$ mọi điểm $E\in AM$ đều cách đều 2 đầu mút B,C (theo tính chất đường trung trực)

$\Rightarrow EB=EC$

$\Rightarrow \triangle EBC$ cân tại $E$.

Akai Haruma
28 tháng 12 2023 lúc 0:30

Hình vẽ:

hacker
Xem chi tiết

a: Xét ΔAMC và ΔDMB có

MA=MD

\(\widehat{AMC}=\widehat{DMB}\)(hai góc đối đỉnh)

MC=MB

Do đó: ΔAMC=ΔDMB

b: Xét ΔAMB và ΔDMC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)

MB=MC

Do đó: ΔAMB=ΔDMC

c: Ta có: ΔAMB=ΔDMC

=>AB=DC

Ta có: ΔAMB=ΔDMC

=>\(\widehat{MAB}=\widehat{MDC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//CD

d: ta có: ΔAMC=ΔDMB

=>AC=DB

Ta có: ΔAMC=ΔDMB

=>\(\widehat{MAC}=\widehat{MDB}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AC//BD

e: Xét ΔKDM và ΔHAM có

KD=HA

\(\widehat{KDM}=\widehat{HAM}\)

DM=AM

Do đó: ΔKDM=ΔHAM

=>\(\widehat{KMD}=\widehat{HMA}\)

mà \(\widehat{KMD}+\widehat{KMA}=180^0\)(hai góc kề bù)

nên \(\widehat{HMA}+\widehat{KMA}=180^0\)

=>H,M,K thẳng hàng