Ôn tập chương Hàm số và đồ thị

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lê Trần Khánh Vân

Cho ΔABC có AB=AC, M là trung điểm của BC

a) Chứng minh ΔAMB=ΔAMC. Suy ra góc AMB=AMC

b)Chứng minh AM\(\perp\)BC

c)Trên cạnh AB, AC lần lượt lấy điểm H và điểm K sao cho AH=AK. Chứng minh ΔAHM=ΔAKM và MA là tia phân giác của góc HMK

d) Chứng minh: ΔBHM=ΔCKM

Giang
27 tháng 12 2017 lúc 8:52

Hình vẽ:

A B C M H K

Giải:

a) Xét tam giác AMB và tam giác AMC, có:

\(AB=AC\left(gt\right)\)

\(MB=MC\) (M là trung điểm BC)

AM là cạnh chung

\(\Rightarrow\Delta AMB=\Delta AMC\left(c.c.c\right)\)(đpcm)

\(\Leftrightarrow\widehat{AMB}=\widehat{AMC}\) (Hai góc tương ứng)

b) Ta có: \(\widehat{AMB}=\widehat{AMC}\)

\(\widehat{AMB}+\widehat{AMC}=180^0\) (Hai góc kề bù)

\(\Leftrightarrow\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)

\(\Leftrightarrow AM\perp BC\left(đpcm\right)\)

c) Xét tam giác AHM và tam giác AKM, có:

\(AH=AK\left(gt\right)\)

\(\widehat{HAM}=\widehat{KAM}\) (\(\Delta AMB=\Delta AMC\))

AM là cạnh chung

\(\Rightarrow\Delta AHM=\Delta AKM\left(c.g.c\right)\)(đpcm)

\(\Leftrightarrow\widehat{AMH}=\widehat{AMK}\) (Hai cạnh tương ứng)

\(\Leftrightarrow\) MA là tia phân giác của \(\widehat{HMK}\) (đpcm)

d) Ta có: \(AB=AC\left(gt\right)\)

Lại có: \(AH=AK\left(gt\right)\)

Lấy vễ trừ theo vế, ta được:

\(AB-AH=AC-AK\)

\(\Leftrightarrow BH=CK\)

Xét tam giác BHM và tam giác CKM, có:

\(BH=CK\) (Chứng minh trên)

\(HM=HK\left(\Delta AHM=\Delta AKM\right)\)

\(MB=MC\) (M là trung điểm BC)

\(\Rightarrow\Delta BHM=\Delta CKM\left(c.c.c\right)\) (đpcm)

Ngô Tấn Đạt
27 tháng 12 2017 lúc 9:33

a.

Xét \(\Delta ABM\)\(\Delta ACM\) có :

\(AB=AC\left(gt\right)\\ AM\left(chung\right)\\ BM=CM\\ \Rightarrow\Delta ABM=\Delta ACM\left(c-c-c\right)\\ \Rightarrow\widehat{AMB}=\widehat{AMC}\)

b.

\(\Delta ABM=\Delta ACM\\ \Rightarrow\widehat{AMB}=\widehat{AMC}=90^0\\ \Rightarrow AM\perp BC\)

c.

\(\Delta ABM=\Delta ACM\\ \Rightarrow\widehat{BAM}=\widehat{CAM}\)

Xét \(\Delta AHM\)\(\Delta AKM\) có :

\(AH=AK\left(gt\right)\\ \widehat{HAM}=\widehat{KAM}\left(cmt\right)\\ AM\left(chung\right)\\ \Rightarrow\Delta AHM=\Delta AKM\left(c-g-c\right)\)

\(\Rightarrow\widehat{HMA}=\widehat{KMA}\)

=> MA là tia phân giác góc HMK

d.

AB=AC

AH=AK

=> BH=CK

AB=AC => tg ABC cân tại A

=> góc B = góc C

Xet \(\Delta BHM\)\(\Delta CKM\) có :

\(BH=CK\left(cmt\right)\\ \widehat{B}=\widehat{C}\\ MB=MC\\ \Rightarrow\Delta BHM=\Delta CKM\left(c-g-c\right)\)

Huỳnh Thị Tuyền
27 tháng 12 2017 lúc 15:39

Tm gi EMD v tm giEMG

EM hung

BM=GM

EB=EG

tm giEMD=tm gi EMG


Các câu hỏi tương tự
quyen pham
Xem chi tiết
7/2 Gia Khanh
Xem chi tiết
Thùy Trang
Xem chi tiết
Nguyễn Anh Kiệt
Xem chi tiết
ho ha linh
Xem chi tiết
Ss Dr
Xem chi tiết
ho ha linh
Xem chi tiết
Nguyễn Ngọc Hà
Xem chi tiết
25.ĐỨC THẮNG
Xem chi tiết