a, Xét \(\Delta ABM\) và \(\Delta ACM\) có:
\(BM=CM\left(M-là-tr.điểm-BC\right)\)
\(\widehat{B_1}=\widehat{C_1}\left(\Delta ABC-cân-tại-A\right)\)
\(AB=AC\left(\Delta ABC-cân-tại-A\right)\)
\(\Rightarrow\Delta ABM=\Delta ACM\left(c-g-c\right)\left(đpcm_1\right)\)
b, Xét \(\Delta ABC\) có:
\(D-là-tr.điểm-của-AB\)
\(E-là-tr.điểm-của-AC\)
\(\Rightarrow DE//BC\)
Mà: \(\widehat{AMB}=\widehat{AMC}=\frac{180^0}{2}=90^0\)
\(\Rightarrow AM\perp BC\)
Từ trên ta có: \(\left\{{}\begin{matrix}AM\perp BC\\DE//BC\end{matrix}\right.\Rightarrow DE\perp AM\left(đpcm_2\right)\)