a/ Xét \(\Delta ABM;\Delta ACM\) có :
\(\left\{{}\begin{matrix}AB=AC\\AMchung\\BM=CM\end{matrix}\right.\)
\(\Leftrightarrow\Delta ABM=\Delta ACM\left(c-c-c\right)\)
\(\Leftrightarrow\widehat{AMB}=\widehat{AMC}\)
Mà \(\widehat{AMB}+\widehat{AMC}=180^0\)
\(\Leftrightarrow\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)
\(\Leftrightarrow AM\perp BC\)
b/ \(\Delta AMB=\Delta AMC\)
\(\Leftrightarrow\widehat{BAM}=\widehat{CAM}\)
Mà AM nằm giữa AB và AC
\(\Leftrightarrow AM\) là tia phân giác của \(\widehat{BAC}\)