Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tùng Chi Pcy
Xem chi tiết
Thanh Thảo
22 tháng 4 2018 lúc 11:37

Mình viết luôn là sin với cos, bạn tự cho thêm \(\alpha\) nhé.

VT= \(\sin^2.\dfrac{\sin}{\cos}+\cos^2.\dfrac{\cos}{\sin}+2\sin\cos\)

= \(\dfrac{\sin^3}{\cos}+\dfrac{\cos^3}{\sin}+2\sin\cos\)

= \(\dfrac{\sin^4+\cos^4+2\sin^2.\cos^2}{\cos.\sin}\)

= \(\dfrac{\left(\sin^2+\cos^2\right)^2}{\cos.\sin}\)

= \(\dfrac{1}{\sin.\cos}\)(1)

VP = \(\dfrac{\sin}{\cos}+\dfrac{\cos}{\sin}\)

= \(\dfrac{\sin^2+\cos^2}{\cos.\sin}\)

= \(\dfrac{1}{\cos.\sin}\)(2)

từ (1) và (2) => VT=VP (đpcm)

Chúc bạn học tốt!

Sách Giáo Khoa
Xem chi tiết
Bùi Thị Vân
11 tháng 5 2017 lúc 8:24

a)\(sin\left(\alpha+\dfrac{\pi}{2}\right)=cos\left[\dfrac{\pi}{2}-\left(\alpha+\dfrac{\pi}{2}\right)\right]=cos\left(-\alpha\right)=cos\alpha\).
b) \(cos\left(x+\dfrac{\pi}{2}\right)=sin\left[\dfrac{\pi}{2}-\left(x+\dfrac{\pi}{2}\right)\right]=sin\left(-x\right)=-sinx\).
c) \(tan\left(\alpha+\dfrac{\pi}{2}\right)=\dfrac{sin\left(\alpha+\dfrac{\pi}{2}\right)}{cos\left(\alpha+\dfrac{\pi}{2}\right)}=\dfrac{cos\alpha}{-sin\alpha}=-cot\alpha\).
d) \(cot\left(\alpha+\dfrac{\pi}{2}\right)=\dfrac{cos\left(\alpha+\dfrac{\pi}{2}\right)}{sin\left(\alpha+\dfrac{\pi}{2}\right)}=\dfrac{-sin\alpha}{cos\alpha}=-tan\alpha\).

Nguyễn Hoàng Bảo An
Xem chi tiết
Nhi Hoàng
Xem chi tiết
minh phạm đức
Xem chi tiết
Nguyễn Linh Chi
13 tháng 4 2020 lúc 11:49

1) \(\left(\tan\alpha+\cot\alpha\right)^2-\left(\tan\alpha-\cot\alpha\right)^2\)

\(\tan^2\alpha+\cot^2\alpha+2\tan\alpha.\cot\alpha-\tan^2\alpha+2\tan\alpha.\cot\alpha-\cot^2\alpha\)

\(4\tan\alpha.\cot\alpha\)

\(4.\frac{\cos\alpha}{\sin\alpha}.\frac{\sin\alpha}{\cos\alpha}=4\)

2) \(\frac{2-\sqrt{2+\sqrt{2+\sqrt{2}}}}{2-\sqrt{2+\sqrt{2}}}\)

\(\frac{4-2-\sqrt{2+\sqrt{2}}}{\left(2+\sqrt{2+\sqrt{2+\sqrt{2}}}\right)\left(2-\sqrt{2+\sqrt{2}}\right)}\)

\(\frac{1}{\left(2+\sqrt{2+\sqrt{2+\sqrt{2}}}\right)}\)

Mặt khác: \(\sqrt{2}< 2\Rightarrow2+\sqrt{2}< 4\Rightarrow2+\sqrt{2+\sqrt{2}}< 2+\sqrt{4}=4\)

=> \(2+\sqrt{2+\sqrt{2+\sqrt{2}}}< 2+\sqrt{4}=4\)

=> \(\frac{1}{2+\sqrt{2+\sqrt{2+\sqrt{2}}}}>\frac{1}{4}\)

=> \(\frac{2-\sqrt{2+\sqrt{2+\sqrt{2}}}}{2-\sqrt{2+\sqrt{2}}}>\frac{1}{4}\)

Khách vãng lai đã xóa
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
25 tháng 9 2023 lúc 16:30

a) 

Trên nửa đường tròn đơn vị, lấy điểm M sao cho \(\widehat {xOM} = \alpha \)

Gọi H, K lần lượt là các hình chiếu vuông góc của M trên Ox, Oy.

 

Ta có: tam giác vuông OHM vuông tại H và \(\alpha  = \widehat {xOM}\)

Do đó: \(\sin \alpha  = \frac{{MH}}{{OM}} = MH;\;\cos \alpha  = \frac{{OH}}{{OM}} = OH.\)

\( \Rightarrow {\cos ^2}\alpha  + {\sin ^2}\alpha  = O{H^2} + M{H^2} = O{M^2} = 1\)

b) Ta có:

\(\begin{array}{l}\;\tan \alpha  = \frac{{\sin \alpha }}{{\cos \alpha }};\;\cot \alpha  = \frac{{\cos \alpha }}{{\sin \alpha }}.\\ \Rightarrow \;\tan \alpha .\cot \alpha  = \frac{{\sin \alpha }}{{\cos \alpha }}.\frac{{\cos \alpha }}{{\sin \alpha }} = 1\end{array}\)

c) Với \(\alpha  \ne {90^o}\) ta có:

\(\begin{array}{l}\;\tan \alpha  = \frac{{\sin \alpha }}{{\cos \alpha }};\;\\ \Rightarrow \;1 + {\tan ^2}\alpha  = 1 + \frac{{{{\sin }^2}\alpha }}{{{{\cos }^2}\alpha }} = \frac{{{{\sin }^2}\alpha  + {{\cos }^2}\alpha }}{{{{\cos }^2}\alpha }} = \frac{1}{{{{\cos }^2}\alpha }}\;\end{array}\)

d) Ta có:

\(\begin{array}{l}\cot \alpha  = \frac{{\cos \alpha }}{{\sin \alpha }};\;\\ \Rightarrow \;1 + {\cot ^2}\alpha  = 1 + \frac{{{{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }} = \frac{{{{\sin }^2}\alpha  + {{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }} = \frac{1}{{{{\sin }^2}\alpha }}\;\end{array}\)

Hoàng Điệp
Xem chi tiết
Uyên Nhi
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 7 2023 lúc 22:23

a:

2: pi/2<a<pi

=>sin a>0 và cosa<0

tan a=-2

1+tan^2a=1/cos^2a=1+4=5

=>cos^2a=1/5

=>\(cosa=-\dfrac{1}{\sqrt{5}}\)

\(sina=\sqrt{1-\dfrac{1}{5}}=\dfrac{2}{\sqrt{5}}\)

cot a=1/tan a=-1/2

3: pi<a<3/2pi

=>cosa<0; sin a<0

1+cot^2a=1/sin^2a

=>1/sin^2a=1+9=10

=>sin^2a=1/10

=>\(sina=-\dfrac{1}{\sqrt{10}}\)

\(cosa=-\dfrac{3}{\sqrt{10}}\)

tan a=1:cota=1/3

b;

tan x=-2

=>sin x=-2*cosx

\(A=\dfrac{2\cdot sinx+cosx}{cosx-3sinx}\)

\(=\dfrac{-4cosx+cosx}{cosx+6cosx}=\dfrac{-3}{7}\)

2: tan x=-2 

=>sin x=-2*cosx

\(B=\dfrac{-4cosx+3cosx}{-6cosx-2cosx}=\dfrac{1}{8}\)

Uyên Nhi
Xem chi tiết
Thanh Hoàng Thanh
11 tháng 4 2022 lúc 8:49

undefined