Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
tran duc huy
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 11 2019 lúc 0:08

\(\left(tanx-cotx\right)^2=9\Rightarrow tan^2x-2.tanx.cotx+cot^2x=9\)

\(\Rightarrow tan^2x+cot^2x=11\)

\(\left(tanx+cotx\right)^2=tan^2x+cot^2x+2.tanx.cotx=11+2=13\)

\(\Rightarrow tanx+cotx=\pm\sqrt{13}\)

\(tan^4x-cot^4x=\left(tan^2x+cot^2x\right)\left(tan^2x-cot^2x\right)\)

\(=11\left(tanx+cotx\right)\left(tanx-cotx\right)=\pm33\sqrt{13}\)

Khách vãng lai đã xóa
Trần Vũ Quang
Xem chi tiết
Nguyễn Thành Trương
27 tháng 7 2019 lúc 16:42
Hỏi đáp Toán
Lê _Ngọc_Như_Quỳnh
27 tháng 7 2019 lúc 20:19
https://i.imgur.com/CkMJK6D.jpg
Mai Anh
Xem chi tiết
Mai Anh
Xem chi tiết
Tuyết Hân
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 8 2020 lúc 18:52

1. Không biết yêu cầu đề bài là gì???

2. Biểu thức đề bài ko rõ ràng (ko biết căn thức tới đâu, đâu là tử số đâu là mẫu số).

Bạn cần ghi rõ yêu cầu đề bài, và sử dụng công cụ gõ công thức (kí hiệu khoanh đỏ trên khung soạn thảo) để mọi người đỡ mệt.

Hỏi đáp Toán

títtt
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 8 2023 lúc 20:11

a: tan x(cot^2x-1)

\(=\dfrac{1}{cotx}\left(cot^2x-cotx\cdot tanx\right)\)

=cotx-tanx/cotx=cotx(1-tan^2x)

b: \(tan^2x-sin^2x=\dfrac{sin^2x}{cos^2x}-sin^2x\)

\(=sin^2x\left(\dfrac{1}{cos^2x}-1\right)=sin^2x\cdot\dfrac{sin^2x}{cos^2x}=sin^2x\cdot tan^2x\)

c: \(\dfrac{cos^2x-sin^2x}{cot^2x-tan^2x}=\dfrac{cos^2x-sin^2x}{\dfrac{cos^2x}{sin^2x}-\dfrac{sin^2x}{cos^2x}}\)

\(=\left(cos^2x-sin^2x\right):\dfrac{cos^4x-sin^4x}{sin^2x\cdot cos^2x}\)

\(=\dfrac{sin^2x\cdot cos^2x}{1}=sin^2x\cdot cos^2x\)

=>sin^2x*cos^2x-cos^2x=cos^2x(sin^2x-1)

=-cos^2x*cos^2x=-cos^4x

=>ĐPCM

Ngoc Nhi Tran
Xem chi tiết
Vũ Nguyễn Linh Chi
Xem chi tiết
Nguyễn Việt Lâm
4 tháng 8 2021 lúc 18:08

ĐKXĐ: \(x\ne\dfrac{k\pi}{2}\)

\(\dfrac{sinx}{cosx}+\dfrac{cosx}{sinx}+7=\dfrac{cos^22x}{sin^22x}\)

\(\Leftrightarrow\dfrac{sin^2x+cos^2x}{sinx.cosx}+7=\dfrac{1-sin^22x}{sin^22x}\)

\(\Leftrightarrow\dfrac{2}{sin2x}+7=\dfrac{1}{sin^22x}-1\)

\(\Leftrightarrow\dfrac{1}{sin^22x}-\dfrac{2}{sin2x}-8=0\)

\(\Rightarrow\left[{}\begin{matrix}\dfrac{1}{sin2x}=4\\\dfrac{1}{sin2x}=-2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}sin2x=\dfrac{1}{4}\\sin2x=-\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}arcsin\left(\dfrac{1}{4}\right)+k\pi\\x=\dfrac{\pi}{2}-\dfrac{1}{2}arcsin\left(\dfrac{1}{4}\right)+k\pi\\x=-\dfrac{\pi}{12}+k\pi\\x=\dfrac{7\pi}{12}+k\pi\end{matrix}\right.\)