Cho tam giác ABC nhọn, các đường cao AD, BE, CF cắt nhau tại H. Gọi I; K; M; N lần lượt là hình chiếu của D trên AB; BE; CF;AC. Chứng minh I,K,M,N thẳng hàng
Giúp mình với mình cảm ơn!!
1.Cho tam giác ABC nhọn, các đường cao AD, BE, CF cắt nhau tại H. Gọi I và K lần lượt là hình chiếu của điểm D trên các đường thẳng BE và CF. Chứng minh rằng 1.Cho tam giác ABC nhọn, các đường cao AD, BE, CF cắt nhau tại H. Gọi I và K lần lượt là hình chiếu của điểm D trên các đường thẳng BE và CF. Chứng minh rằng b.IK //EF c. Trong các tam giác AEF, BDF, CDE có ít nhất một tam giác có diện tích nhỏ hơn hoặc bằng 1/4 diện tích tam giác ABC b.IK //EF
b: góc HID+góc HKD=180 độ
=>HIDK nội tiếp
=>góc HIK=góc HDK
=>góc HIK=góc HCB
=>góc HIK=góc HEF
=>EF//IK
Cho tam giác ABC có 3 góc nhọn nội tiếp (O;R). Các đường cao AD, BE, CF cắt nhau tại H. Các đường thẳng BE và CF cắt đường tròn (O;R) tại Q và K. Gọi I là trung điểm BC, chứng minh I thuộc đường trong ngoại tiếp tam giác DEF
xét tứ giác BFHD có
góc BFH + góc BDH = 180
mà nó là 2 góc đối => nội tiếp => góc FDH = góc FBE
chứng minh tương tự với tứ giác CEHD
=> góc HDE = góc HCE
Xét tứ giác BFEC có
góc BFC = góc BEF = 90
mà nó là 2 góc kề => tứ giác nội tiếp
mà góc BEC = 1/2 sđ BC = 90 => SĐ BC = 180 => BC là đường kính mà I là trung điểm BC => I là tâm đường tròn ngoại tiếp tứ giác BFEC
=> góc FIE = góc FBE + góc FCE
=> Góc FIE = góc FDH+góc HDE => góc FIE = góc FDE
mà nó là 2 góc kề => nội tiếp
=> điều phải cm
Cho tam giác ABC nhọn, các đường cao AD, BE, CF cắt nhau tại H. Gọi I là giao của AD và EF. CMR: IH x AD = AI x HD
cho tam giác nhọn ABC (AB<AC) . Ba đường cao AD,BE và CF cắt nhau tại H. Gọi i là ...
??????????????
cho tam giác ABC nhọn các đường cao AD , BE , CF cắt nhau tại H . Gọi I là giao điểm EF và AD chứng minh rằng :
1, AD.HD=DB.CD
2, tam giác AEF đồng dạng với tam giác ABC
3, AI.HD=IH.AD
cho tam giác ABC nhọn các đường cao AD , BE , CF cắt nhau tại H . Gọi I là giao điểm EF và AD chứng minh rằng :
1, AD.HD=DB.CD
2, tam giác AEF đồng dạng với tam giác ABC
3, AI.HD=IH.AD
1: Xét ΔDCH vuông tại D và ΔDAB vuông tại D có
\(\widehat{DCH}=\widehat{DAB}\)
Do đó:ΔDCH đồng dạng với ΔDAB
=>\(\dfrac{DC}{DA}=\dfrac{DH}{DB}\)
=>\(DC\cdot DB=DA\cdot DH\)
2: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{EAB}\) chung
Do đó: ΔAEB đồng dạng với ΔAFC
=>\(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)
=>\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
Xét ΔAEF và ΔABC có
\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
\(\widehat{FAE}\) chung
Do đó: ΔAEF đồng dạng với ΔABC
Cho tam giác nhọn ABC. Các đường cao AD, BE, CF cắt nhau tại H. Gọi I,K,Q,E lần lượt là các đường vuông góc hạ từ E xuồng AB,AD,CF,BC. CM:I,K,Q,R cùng nằm trên 1 đường thẳng
\(\dfrac{IA}{IF}=\dfrac{EA}{EC}=\dfrac{KA}{KH}\Rightarrow\)IK//DF.
\(\dfrac{RC}{RD}=\dfrac{EC}{EA}=\dfrac{QC}{QF}\Rightarrow\)QR//DF.
\(\dfrac{FB}{FI}=\dfrac{HB}{HE}=\dfrac{DB}{DR}\Rightarrow\)IR//DF
\(\Rightarrow\)4 điểm I,K,Q,R thẳng hàng.
Cho tam giác nhọn ABC có đường cao AD, BE, CF cắt nhau tại H. Gọi I là giao điểm của EF và AH. Chứng minh AD*HD=DB*CD
Tam giác AEF đồng dạng tam giác ABC
AI*HD=IH*AD
Cho tam giác ABC nhọn, các đường cao AD,BE,CF cắt nhau tại H.
tính ah/ad+bh/be+ch/cf