\(\dfrac{IA}{IF}=\dfrac{EA}{EC}=\dfrac{KA}{KH}\Rightarrow\)IK//DF.
\(\dfrac{RC}{RD}=\dfrac{EC}{EA}=\dfrac{QC}{QF}\Rightarrow\)QR//DF.
\(\dfrac{FB}{FI}=\dfrac{HB}{HE}=\dfrac{DB}{DR}\Rightarrow\)IR//DF
\(\Rightarrow\)4 điểm I,K,Q,R thẳng hàng.
\(\dfrac{IA}{IF}=\dfrac{EA}{EC}=\dfrac{KA}{KH}\Rightarrow\)IK//DF.
\(\dfrac{RC}{RD}=\dfrac{EC}{EA}=\dfrac{QC}{QF}\Rightarrow\)QR//DF.
\(\dfrac{FB}{FI}=\dfrac{HB}{HE}=\dfrac{DB}{DR}\Rightarrow\)IR//DF
\(\Rightarrow\)4 điểm I,K,Q,R thẳng hàng.
Cho tam giác nhọn ABC. Các đường cao AD, BE, CF cắt nhau tại H Gọi I, K, Q, R lần lượt là chân các đường vuông góc hạ từ E xuống AB, AD, CF, BC. CMR: Bốn điểm I, K, Q, R cùng nằm trên một đường thẳng
Cho ΔABC nhọn. Các đường cao AD, BE, CF cắt nhau tại H. CMR:
a, \(AD.AH\le\dfrac{BC^2}{4}\)
b, Gọi I, K,Q,R lần lượt là chân các đường vuông góc hạ từ E xuống AB,AD,CF,BC. CM: I,K,Q,R cùng nằm trên 1 đường thẳng.
Cho tam giác nhọn ABC . Các đường cao AD,BE,CF cắt nhau tại H. Chứng minh rằng:
a) Tam giác AEF đồng dạng với tam giác ABC
b) BH.BE + CH.CF = BC2
c) AD.HD < BC2/4
d) Gọi I,K,Q,R lần lượt là chân các đường vuông góc hạ từ E xuống AB,AD ,CF,BC . Chứng minh bốn điểm I,K,Q,R cùng nằm trên một đường thẳng.
Cho tam giác nhọn ABC. Các đường cao AD, BE, CF cắt nhau tại H. CMR:
a. Tam giác AEF đồng dạng tam giác ABC
b.BH.BE + CH.CF = BC2
c.AD.HD\(\le\)\(\frac{BC^2}{4}\)
d.Gọi I, K, Q, R lần lượt là chân các đường vuông góc hạ từ E xuống AB, AD, CF,BC. CMR bốn điểm I, K, Q, R cùng nằm trên cùng một đường thẳng
Cho tam giác ABC có các góc đều nhọn các đường cao AD,BE,CF cắt nhau tại H cmr
a,cmr:tam giác AFE ~tam giác ACB
b,BF.BA+CE.CA=BC^2
c, AD.HD(BC^2)/4
d, Gọi I,K,Q.R lần lượt là chân các đường cao hạ từ E xuống AB,AD,CF,BC CM: 4 ĐIỂM I,K,Q.R cùng nằm trên 1 đường thẳng
đang cần gấp câu c, d nhé
cho tam giác ABC nhọn, các đường cao AD,BE,CF cắt nhau tại H, từ H hạ HM vuông góc với EF tại M và HN vuông góc với ED tại N. gọi I;J;Q;K lần lượt là hình chiếu của F trên AC, AD, BE, BC. chứng minh I;J;Q;K thẳng hàng.
Cho tam giác ABC nhọn, các đường cao AD, BE, CF cắt nhau tại H. Từ H hạ HM vuông góc EF tại M và HN vuông góc ED tại N.
a)CMR: tam giác BED đồng dạng tam giác BCH
b) CM: HM=HN
c) Gọi I,J,Q,K lần lượt là hình chiếu của F trên AC, AD, BE, BC. Cmr: I,J,Q,K thẳng hàng
Cho tam giác ABC nhọn (AB < AC). Các đường cao AD, BM, CN của tam giác ABC cắt nhau tại H. Gọi O là trung điểm của BC, E là điểm đối xứng của H qua O. Kẻ CF vuông góc với BE tại F. Gọi K,L, R lần lượt là chân đường vuông góc kẻ từ N đến AC, AD, BC. Gọi giao điểm của DM và CN là S. CMR:
1. Ba điểm K, L, R thẳng hàng
2. HN.CS = NC.SH
3. Tia phân giác của góc BAC cắt BC tại I, kẻ đường thẳng đi qua C và vuông góc với đường thẳng AI tại P, đường thẳng CP cắt đường thẳng AO tại Q. Gọi G là trung điểm của đoạn thẳng IQ. CMR: đường thẳng PG đi qua trung điểm của đoạn thẳng AC
Cho tam giác ABC nhọn, các đường cao AD, BE, CF cắt nhau tại H. Từ H hạ HM vuông góc với EF tại M và HN vuông góc với ED tại N.
a. Chứng minh tam giác BED và tam giác BCH đồng dạng
b. Chứng minh: HM=HN
c. Gọi I; J; Q; K lần lượt là hình chiếu của F trên AC; AD; BE; BC. Chứng minh I; J; Q; K