cho tam giác ABC nhọn, các đường cao AD,BE,CF cắt nhau tại H, từ H hạ HM vuông góc với EF tại M và HN vuông góc với ED tại N. gọi I;J;Q;K lần lượt là hình chiếu của F trên AC, AD, BE, BC. chứng minh I;J;Q;K thẳng hàng.
Cho tam giác ABC với ba đường cao AD; BE; CF. Gọi M; N; I; K lần lượt là hình chiếu của D trên AB; AC; BE; CF. Chứng minh: 4 điểm M; N; I; K thẳng hàng
cho tam giác ABC cân tại A, ba đường cao AD,BE,CF. Gọi M,N,I,K lần lượt là hình chiếu của D trên AB,AC,BE,CF. Chứng minh rằng 4 điểm M,N,I,K thẳng hàng
cho tam giác ABC có 3 đường cao AD, BE, CF. Gọi M,N,I,K lần lượt là hình chiếu của D trên AB,AC,BE,CF. chứng minh I,M,N,K thẳng hàng
Cho tam giác ABC nhọn ( AB < AC) có các đường cao AD, BE, CF cắt nhau tại H. Gọi M là điểm đối xứng của H qua D. Gọi I và K là hình chiếu của củ M trên AB và AC. Chứng minh I,D,K thẳng hàng.
cho tam giác nhọn ABC có 3 đường cao AD,BE,CF cắt nhau tại H. Gọi G,I,K,P thư tự là hình chiếu của D trên AB,BE,CF,CA. Chứng minh rằng 4 điểm G,I,K,P thẳng hàng.
Giúp mình với :::
1) Cho tam giác nhọn ABC có các đường cao AD; BE; CF cắt nhau tại H.
a) CMR: Điểm H cách đều các cạnh của tam giác DEF.
b) Gọi I; K; M; N theo thứ tự là chân các đường vuông góc kẻ từ D đến BA; BE; CF; CA. Chứng minh rằng: I; K ;M ;N thẳng hàng.
Cho tam giác ABC nhọn, các đường cao AD, BE, CF cắt nhau tại H. Từ H hạ HM vuông góc với EF tại M và HN vuông góc với ED tại N.
a. Chứng minh tam giác BED và tam giác BCH đồng dạng
b. Chứng minh: HM=HN
c. Gọi I; J; Q; K lần lượt là hình chiếu của F trên AC; AD; BE; BC. Chứng minh I; J; Q; K
Cho tam giác ABC nhọn ( AB < AC) có các đường cao AD, BE, CF cắt nhau tại H. Gọi M là điểm đối xứng của H qua D. Gọi I và K là hình chiếu của củ M trên AB và AC. Chứng minh a) góc AEF= góc CED.
b)Gọi N là gđ của EF và AM. C/m HN.AD=AN.DM
c) C/m I,D,K thẳng hàng