Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Big City Boy
Xem chi tiết
Nguyễn Hoàng Minh
10 tháng 10 2021 lúc 15:37

Giả sử \(x+\sqrt{2}\) hữu tỉ thì \(x=-\sqrt{2}\) do \(\sqrt{2}\) vô tỉ

Do đó \(x\) vô tỉ

Vậy \(x^3+\sqrt{2}\) vô tỉ

Vậy ko tồn tại số thực x tm đề

Hmm cái này ko chắc :))

 

Trúc Giang
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 8 2021 lúc 14:33

\(P=\dfrac{3\sqrt{x}+6-1}{\sqrt{x}+2}=3-\dfrac{1}{\sqrt{x}+2}< 3\)

\(P=\dfrac{6\sqrt{x}+10}{2\left(\sqrt{x}+2\right)}=\dfrac{5\left(\sqrt{x}+2\right)+\sqrt{x}}{2\left(\sqrt{x}+2\right)}=\dfrac{5}{2}+\dfrac{\sqrt{x}}{2\left(\sqrt{x}+2\right)}\ge\dfrac{5}{2}\)

\(\Rightarrow\dfrac{5}{2}\le P< 3\) ; \(\forall x\in\) TXĐ nên không tồn tại x để P nguyên (giữa 5/2 và 3 không có số nguyên nào)

Phan Trí Bằng
18 tháng 8 2021 lúc 14:34

undefined

_Banhdayyy_
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 8 2021 lúc 14:13

Bài 12: 

Để N là số nguyên thì \(\sqrt{x}+3⋮\sqrt{x}+5\)

\(\Leftrightarrow-2⋮\sqrt{x}+5\)

\(\Leftrightarrow\sqrt{x}+5\in\left\{1;-1;2;-2\right\}\)(vô lý

Nguyễn Lê Phước Thịnh
10 tháng 8 2021 lúc 14:14

Bài 11: 

Để M là số nguyên thì \(3\sqrt{x}+1⋮\sqrt{x}+3\)

\(\Leftrightarrow\sqrt{x}+3\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)

\(\Leftrightarrow\sqrt{x}+3\in\left\{4;8\right\}\)

\(\Leftrightarrow x\in\left\{1;25\right\}\)

Tố Quyên
Xem chi tiết
HT.Phong (9A5)
23 tháng 10 2023 lúc 17:05

Ta có:

\(x^2+4y^2+z^2-4x+4y-8z+24=0\)

\(\Leftrightarrow x^2-4x+4+4y^2+4y+1+z^2-8z+16+3=0\)

\(\Leftrightarrow\left(x^2-4x+4\right)+\left(4y^2+4y+1\right)+\left(z^2-8z+16\right)+3=0\)

\(\Leftrightarrow\left(x-2\right)^2+\left(2y+1\right)^2+\left(z-4\right)^2+3=0\)

Mà: \(\left\{{}\begin{matrix}\left(x-2\right)^2\ge0\\\left(2y+1\right)^2\ge0\\\left(z-4\right)^2\ge0\end{matrix}\right.\)

 \(\Rightarrow\left(x-2\right)^2+\left(2y+1\right)^2+\left(z-4\right)^2+3\ge3\ne0\)

Vậy không có số thực x, y, z nào thỏa mãn đẳng thức.

nguyễn bích thuỳ
Xem chi tiết
elsa frozen
Xem chi tiết
Vũ Nguyễn Trường An
Xem chi tiết
Đặng Hoàng Long
25 tháng 10 2016 lúc 20:59

tồn tại với x= 5

nguyễn bích thuỳ
Xem chi tiết
Nguyễn Hương
Xem chi tiết
Akai Haruma
17 tháng 8 2019 lúc 0:06

Lời giải:

ĐK: $x,y\geq 0$

Bình phương 2 vế thu được:
\(x+y+2\sqrt{xy}=2\)

\(\Rightarrow 2\sqrt{xy}=2-x-y\in\mathbb{Z}\)

Nếu $\sqrt{xy}\not\in\mathbb{Z}$ thì $xy\not\in\mathbb{Z}$ (vô lý). Do đó $\sqrt{xy}\in\mathbb{Z}\Rightarrow 2-x-y=2\sqrt{xy}$ là 1 số nguyên chẵn.

$\Rightarrow x+y$ chẵn. Mà $x+y=2-2\sqrt{xy}\leq 2; x+y\geq 0$ với mọi $x,y\geq 0$ nên $x+y=0$

$\Rightarrow x=y=0$ (do $x,y\geq 0$). Thử lại thấy không đúng.

Do đó không tồn tại $x,y$ thỏa mãn đề.

Akai Haruma
17 tháng 8 2019 lúc 0:06

Lời giải:

ĐK: $x,y\geq 0$

Bình phương 2 vế thu được:
\(x+y+2\sqrt{xy}=2\)

\(\Rightarrow 2\sqrt{xy}=2-x-y\in\mathbb{Z}\)

Nếu $\sqrt{xy}\not\in\mathbb{Z}$ thì $xy\not\in\mathbb{Z}$ (vô lý). Do đó $\sqrt{xy}\in\mathbb{Z}\Rightarrow 2-x-y=2\sqrt{xy}$ là 1 số nguyên chẵn.

$\Rightarrow x+y$ chẵn. Mà $x+y=2-2\sqrt{xy}\leq 2; x+y\geq 0$ với mọi $x,y\geq 0$ nên $x+y=0$

$\Rightarrow x=y=0$ (do $x,y\geq 0$). Thử lại thấy không đúng.

Do đó không tồn tại $x,y$ thỏa mãn đề.

Akai Haruma
18 tháng 8 2019 lúc 18:40

Cách khác:

Không mất tính tổng quát giả sử $x\geq y\geq 0$

Khi đó $\sqrt{2}=\sqrt{x}+\sqrt{y}\geq 2\sqrt{y}$

$\Rightarrow 2\geq 4y\Rightarrow y\leq \frac{1}{2}$

Mà $y$ là số nguyên không âm nên $y=0$

Thay vào: $\sqrt{x}=\sqrt{2}-\sqrt{y}=\sqrt{2}\Rightarrow x=2$ (thỏa mãn)

Vậy $(x,y)=(2,0); (0;2)$