Tồn tại hay không số thực x để: \(x+\sqrt{2};x^3+\sqrt{2}\) đều là các số hữu tỉ
Tìm x là số thực không âm để \(C=\dfrac{\left(9+2\sqrt{x}\right)}{2+3\sqrt{x}}\varepsilon Z\) là 1 số nguyên
có tồn tại hay k số nguyên x,y thỏa mãn : \(\sqrt{x}+\sqrt{y}=\sqrt{2}\)
Tìm x để \(\sqrt{x^2+x+3}\) là số hữu tỉ
Có tồn tại các số hữu tỉ dương a,b hay không nếu :
a) \(\sqrt{a}+\sqrt{b}=\sqrt{2}\)
b) \(\sqrt{a}+\sqrt{b}=\sqrt{\sqrt{2}}\)
@Akai Haruma
Cho x, y, z là các số hữu tỉ khác 0 thoả mãn x+y=z
Cmr: \(A=\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}}\) là một số hữu tỉ.
Cho x, y, z là các số hữu tỉ thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{z}\)
Chứng minh rằng \(\sqrt{x^2+y^2+z^2}\) là số hữu tỉ
Các idol dô đây lẹ
Tìm các số hữu tỉ b,c biết \(x^2+bx+c=0;x=\sqrt{31-8\sqrt{15}}\)
Cho \(x=\dfrac{\sqrt{2}+1}{\sqrt{2}-1}\) là 1 nghiệm của phương trình: \(ax^2+bx+1\). Với a, b là các số hữu tỉ. Tìm a và b