\(x=\sqrt{31-8\sqrt{15}}=\sqrt{\left(4-\sqrt{15}\right)^2}=4-\sqrt{15}\)
Biểu thức nghịch đảo của x là \(\dfrac{1}{4-\sqrt{15}}=4+\sqrt{15}\)
\(\Rightarrow x=4\pm\sqrt{15}\) là nghiệm PT \(x^2+bx+c\left(1\right)\)
Đặt \(\left\{{}\begin{matrix}S=x_1+x_2\\P=x_1x_2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}S=8\\P=1\end{matrix}\right.\) (x1 và x2 là nghiệm của (1))
Áp dụng Viet đảo thì x là nghiệm của PT \(x^2-8x+1\)
Vậy \(b=-8;c=1\)
Bạn có thể làm thế này:
\(x=4-\sqrt{15}\)
Giả sử \(x=4-\sqrt{15}\) là nghiệm của PT \(x^2+bx+c=0\)
\(\Leftrightarrow\left(4-\sqrt{15}\right)^2+b\left(4-\sqrt{15}\right)+c=0\\ \Leftrightarrow31-8\sqrt{15}+4b-b\sqrt{15}+c=0\\ \Leftrightarrow\sqrt{15}\left(b+8\right)=-\left(4b+c+31\right)\)
Vì b,c hữu tỉ nên \(\sqrt{15}\left(b+8\right)\) hữu tỉ
\(\Leftrightarrow\left\{{}\begin{matrix}b+8=0\\4b+c+31=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-8\\c=1\end{matrix}\right.\)