Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Tường Nguyễn Thế

Cho phương trình \(ax^2+bx+1=0\), với a, b là các số hữu tỉ. Tìm a, b biết \(x=\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\)là nghiệm của phương trình.

Akai Haruma
15 tháng 5 2018 lúc 1:20

Lời giải:

Rút gọn \(x=\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}=4-\sqrt{15}\)

Gọi $x_0$ là một nghiệm nữa của pt đã cho (chưa cần biết phân biệt hay không).

Theo định lý Viete ta có: \(\left\{\begin{matrix} 4-\sqrt{15}+x_0=\frac{-b}{a}(1)\\ (4-\sqrt{15})x_0=\frac{1}{a}(2)\end{matrix}\right.\)

\((2)\Rightarrow x_0=\frac{1}{a(4-\sqrt{15})}=\frac{4+\sqrt{15}}{a}\)

Thay vào (1):

\(4-\sqrt{15}+x_0=4-\sqrt{15}+\frac{4+\sqrt{15}}{a}=\frac{-b}{a}\)

\(\Leftrightarrow a(4-\sqrt{15})+4+\sqrt{15}=-b\)

\(\Leftrightarrow (a-1)(4-\sqrt{15})=-b-8\)

Ta thấy vế phải là một số hữu tỉ nên vế trái cũng là số hữu tỉ

\((a-1)(4-\sqrt{15})\) là tích một số hữu tỉ nhân một số vô tỷ, để kết quả là một số hữu tỉ thì \(a-1=0\Rightarrow a=1\)

\(\Rightarrow b=-8\)

Vậy \((a,b)=(1,-8)\)

ngonhuminh
23 tháng 5 2018 lúc 2:01

x=(√5-√3)/(√5+√3)=(4-√15

a=0

x=1/b; b €Q=>1/b€Q=> 1/b≠4-√15=> a≠0

x=(-b±√∆)/(2a)=-b/(2a)±√∆/(2a)

x1=(4-√15)

a,b€Q=> -b/(2a)=4

√(b^2-4a)/(2a)=√15

16a^2-a=15a^2

a(a-1)=0

a≠0; a=1

a=1=> b =-8


Các câu hỏi tương tự
Big City Boy
Xem chi tiết
Phạm
Xem chi tiết
Vân Trần Thị
Xem chi tiết
Big City Boy
Xem chi tiết
Trúc Nguyễn
Xem chi tiết
Trúc Nguyễn
Xem chi tiết
Hạ Vy
Xem chi tiết
Trúc Giang
Xem chi tiết
Big City Boy
Xem chi tiết