\(\left(2-\sqrt{3}\right)^3+a\left(2-\sqrt{3}\right)^2+b\left(2-\sqrt{3}\right)-1=0\)
\(\Leftrightarrow7a+2b+25-\left(4a+b+15\right)\sqrt{3}=0\)
Do \(a,b\) hữu tỉ và \(\sqrt{3}\) vô tỉ
\(\Rightarrow\left\{{}\begin{matrix}7a+2b+25=0\\4a+b+15=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-5\\b=5\end{matrix}\right.\)
Khi đó pt có dạng:
\(x^5-5x^2+5x-1=0\Leftrightarrow\left(x-1\right)\left(x^2-4x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x^2-4x+1=0\left(1\right)\end{matrix}\right.\)
Giả sử \(x_3=1\) và \(x_1;x_2\) là nghiệm của \(\left(1\right)\Rightarrow\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_1^3+x_2^3=\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=4^3-12=52\\x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=4^2-2=14\end{matrix}\right.\)
\(\Rightarrow S=\dfrac{1}{x^5_1}+\dfrac{1}{x^5_2}+1=A+1\)
\(A=\dfrac{x_1^5+x_2^5}{\left(x_1x_2\right)^5}=x_1^5+x_2^5=\left(x_1^3+x_2^3\right)\left(x_1^2+x^2_2\right)-\left(x_1x_2\right)^2\left(x_1+x_2\right)\)
\(\Rightarrow A=52.14-4=724\)
\(\Rightarrow S=A+1=725\)