Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trúc Giang
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 1 2022 lúc 22:37

Do vế trái dương nên pt chỉ có nghiệm khi \(x\ge\dfrac{3}{4}\), kết hợp điều kiện \(2x^4-3x^2+1\ge0\Rightarrow x\ge1\)

Khi đó:

\(4x-3=\sqrt{2x^4-3x^2+1}+\sqrt{2x^4-x^2}\ge\sqrt{2x^4-3x^2+1+2x^4-x^2}\)

\(\Rightarrow4x-3\ge\sqrt{4x^4-4x^2+1}\)

\(\Rightarrow4x-3\ge\left|2x^2-1\right|=2x^2-1\)

\(\Rightarrow2x^2-4x+2\le0\)

\(\Rightarrow2\left(x-1\right)^2\le0\)

\(\Rightarrow x=1\)

Dương Thị Thu Hiền
Xem chi tiết
ILoveMath
28 tháng 11 2021 lúc 16:20

a, ĐKXĐ: ...

\(\sqrt{3x^2-2x+6}+3-2x=0\)

\(\Leftrightarrow\sqrt{3x^2-2x+6}=2x-3\)

\(\Leftrightarrow3x^2-2x+6=4x^2-12x+9\)

\(\Leftrightarrow4x^2-10x+3=0\)

.....

b, ĐKXĐ: ...

\(\sqrt{x+1}+\sqrt{x-1}=4\\ \Leftrightarrow x+1+x-1+2\sqrt{\left(x+1\right)\left(x-1\right)}=16\\ \Leftrightarrow2\sqrt{x^2-1}=16-2x\\ \Leftrightarrow\sqrt{x^2-1}=8-x\\ \Leftrightarrow x^2-1=64-16x+x^2\\ \Leftrightarrow65-16x=0\\ \Leftrightarrow x=\dfrac{65}{16}\)

Anna
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 11 2023 lúc 13:38

ĐKXĐ: \(\left\{{}\begin{matrix}x-2>=0\\4-x>=0\end{matrix}\right.\)

=>2<=x<=4

\(\sqrt{x-2}-\sqrt{4-x}=2x^2-5x-3\)

=>\(\sqrt{x-2}-1+1-\sqrt{4-x}=2x^2-6x+x-3\)

=>\(\dfrac{x-2-1}{\sqrt{x-2}+1}+\dfrac{1-4+x}{1+\sqrt{4-x}}=\left(x-3\right)\left(2x+1\right)\)

=>\(\left(x-3\right)\left(\dfrac{1}{\sqrt{x-2}+1}+\dfrac{1}{1+\sqrt{4-x}}-2x-1\right)=0\)

=>x-3=0

=>x=3(nhận)

Đăng Trần
Xem chi tiết
nguyen thi mai anh
Xem chi tiết
Thắng Nguyễn
8 tháng 9 2017 lúc 18:31

a)\(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=3\)

\(\Leftrightarrow\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}=3\)

\(\Leftrightarrow\left|1-x\right|+\left|x-2\right|=3\)

Có: \(VT=\left|1-x\right|+\left|x-2\right|\)

\(\ge\left|1-x+x-2\right|=3=VP\)

Khi \(x=0;x=3\)

b)\(\sqrt{x^2-10x+25}=3-19x\)

\(\Leftrightarrow\sqrt{\left(x-5\right)^2}=3-19x\)

\(\Leftrightarrow\left|x-5\right|=3-19x\)

\(\Leftrightarrow x^2-10x+25=361x^2-114x+9\)

\(\Leftrightarrow-360x^2+104x+16=0\)

\(\Leftrightarrow-5\left(5x-2\right)\left(9x+1\right)=0\)

\(\Rightarrow x=\frac{2}{5};x=-\frac{1}{9}\)

c)\(\sqrt{2x-2+2\sqrt{2x-3}}+\sqrt{2x+13+8\sqrt{2x-3}}=5\)

\(\Leftrightarrow\sqrt{2x-3+2\sqrt{2x-3}+1}+\sqrt{2x-3+8\sqrt{2x-3}+16}=5\)

\(\Leftrightarrow\sqrt{\left(\sqrt{2x-3}+1\right)^2}+\sqrt{\left(\sqrt{2x-3}+4\right)^2}=5\)

\(\Leftrightarrow\left|\sqrt{2x-3}+1\right|+\left|\sqrt{2x-3}+4\right|=5\)

\(\Leftrightarrow2\sqrt{2x-3}+5=5\)\(\Leftrightarrow\sqrt{2x-3}=0\Leftrightarrow x=\frac{3}{2}\)

Mai Thị Thúy
Xem chi tiết
Mai Thị Thúy
Xem chi tiết
Hồng Phúc
31 tháng 7 2021 lúc 22:47

a, ĐK: \(\left(x+1\right)\left(x^2+2x-1\right)\ge0\)

\(x^2+5x+2=4\sqrt{x^3+3x^2+x-1}\)

\(\Leftrightarrow x^2+2x-1+3\left(x+1\right)-4\sqrt{\left(x+1\right)\left(x^2+2x-1\right)}=0\)

TH1: \(x\ge-1\)

\(pt\Leftrightarrow\left(\sqrt{x^2+2x-1}-\sqrt{x+1}\right)\left(\sqrt{x^2+2x-1}-3\sqrt{x+1}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+2x-1}=\sqrt{x+1}\\\sqrt{x^2+2x-1}=3\sqrt{x+1}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+2x-1=x+1\\x^2+2x-1=9x+9\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+x-2=0\\x^2-7x-10=0\end{matrix}\right.\)

\(\Leftrightarrow...\)

TH2: \(x< -1\)

\(pt\Leftrightarrow\left(\sqrt{-x^2-2x+1}-\sqrt{-x-1}\right)\left(\sqrt{-x^2-2x+1}-3\sqrt{-x-1}\right)=0\)

\(\Leftrightarrow...\)

Bài này dài nên ... cho nhanh nha, đoạn sau dễ rồi

Mai Thị Thúy
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 7 2021 lúc 23:20

a.

\(\Leftrightarrow\sqrt[3]{3x-5}=\left(2x-3\right)^3+2x-3-\left(3x-5\right)\)

Đặt \(\left\{{}\begin{matrix}2x-3=a\\\sqrt[3]{3x-5}=b\end{matrix}\right.\)

\(\Rightarrow b=a^3+a-b^3\)

\(\Leftrightarrow a^3-b^3+a-b=0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2+1\right)=0\)

\(\Leftrightarrow a=b\)

\(\Leftrightarrow\sqrt[3]{3x-5}=2x-3\)

\(\Leftrightarrow3x-5=\left(2x-3\right)^3\)

\(\Leftrightarrow8x^3-36x^2+51x-22=0\)

\(\Leftrightarrow\left(x-2\right)\left(8x^2-20x+11\right)=0\)

\(\Leftrightarrow...\)

Nguyễn Việt Lâm
22 tháng 7 2021 lúc 23:27

b.

\(\Leftrightarrow x^3-2x^2-\dfrac{5}{3}x+3x-2-\sqrt[3]{81x-8}=0\)

\(\Leftrightarrow x^3-2x^2-\dfrac{5}{3}x+\dfrac{\left(3x-2\right)^3-\left(81x-8\right)}{\left(3x-2\right)^2+\left(3x-2\right)\sqrt[3]{81x-8}+\sqrt[3]{\left(81x-8\right)^2}}=0\)

\(\Leftrightarrow x^3-2x^2-\dfrac{5}{3}x+\dfrac{27\left(x^3-2x^2-\dfrac{5}{3}x\right)}{\left(3x-2\right)^2+\left(3x-2\right)\sqrt[3]{81x-8}+\sqrt[3]{\left(81x-8\right)^2}}=0\)

\(\Leftrightarrow\left(x^3-2x^2-\dfrac{5}{3}x\right)\left(1+\dfrac{27}{\left(3x-2\right)^2+\left(3x-2\right)\sqrt[3]{81x-8}+\sqrt[3]{\left(81x-8\right)^2}}\right)=0\)

\(\Leftrightarrow x^3-2x^2-\dfrac{5}{3}x=0\)

Nguyễn Việt Lâm
22 tháng 7 2021 lúc 23:31

c.

\(\Leftrightarrow\sqrt[3]{x-2}=\left(2x-5\right)^3+x-3\)

\(\Leftrightarrow\sqrt[3]{x-2}=\left(2x-5\right)^3+\left(2x-5\right)-\left(x-2\right)\)

Đặt \(\left\{{}\begin{matrix}2x-5=a\\\sqrt[3]{x-2}=b\end{matrix}\right.\)

\(\Rightarrow b=a^3+a-b^3\)

\(\Leftrightarrow a^3-b^3+a-b=0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2+1\right)=0\)

\(\Leftrightarrow a=b\)

\(\Leftrightarrow2x-5=\sqrt[3]{x-2}\)

\(\Leftrightarrow\left(2x-5\right)^3=x-2\)

\(\Leftrightarrow\left(x-3\right)\left(8x^2-36x+41\right)=0\)

Lê Thu Trang
Xem chi tiết
nguyễn thị thanh
Xem chi tiết
Đặng Thị Hà Tiên
9 tháng 9 2017 lúc 13:50

\(\sqrt{x^2-2x+1}\) + \(\sqrt{x^2-4x+4}\) = 3

<=> \(\sqrt{\left(x-1\right)^2}\)+ \(\sqrt{\left(x-2\right)^2}\)= 3

<=> \(\left|x-1\right|\)+\(\left|x-2\right|\)=3

<=> x - 1 + x - 2 = 3

<=> 2x - 3 = 3

<=> x = \(\dfrac{6}{2}\)= 3

b ,

\(\sqrt{x^2-10x+25}=3-19x\)

<=>\(\sqrt{\left(x-5\right)^2}=3-19x\)

<=> \(\left|x-5\right|=3-19x\)

<=> \(x-5=3-19x\)

\(\Leftrightarrow x+19x=3+5\)

\(\Leftrightarrow20x=8\Leftrightarrow x=\dfrac{8}{20}=\dfrac{2}{5}\)