Rút gọn biểu thức: a, \((\sqrt{3}-1).\sqrt{4+2\sqrt{3}}\) ;
b, \(5\sqrt{2x}-3\sqrt{8x}+\sqrt{50x}-7\) vs x ko âm
rút gọn biểu thức: A= \(\dfrac{\sqrt[3]{2}+\sqrt{7+2\sqrt{10}}+\sqrt[3]{3\sqrt[3]{4}-3\sqrt[3]{2}-1}}{\sqrt{5}+\sqrt{2}+1}\)
Lời giải:
$\sqrt{7+2\sqrt{10}}=\sqrt{2+5+2\sqrt{2.5}}=\sqrt{(\sqrt{2}+\sqrt{5})^2}=\sqrt{2}+\sqrt{5}$
\(\sqrt[3]{3\sqrt[3]{3}-3\sqrt[3]{2}-1}=\sqrt[3]{(1-\sqrt[3]{2})^3}=1-\sqrt[3]{2}\)
Do đó:
\(\text{TS}=\sqrt[3]{2}+\sqrt{2}+\sqrt{5}+1-\sqrt[3]{2}=\sqrt{2}+\sqrt{5}+1=\text{MS}\)
\(A=\frac{\text{TS}}{\text{MS}}=1\)
1 a..Rút gọn biểu thức A = \(\dfrac{\text{ x 2 − 4 x + 4}}{\text{x 3 − 2 x 2 − ( 4 x − 8 ) }}\)
b. Rút gọn biểu thức B = \(\left(\dfrac{x+2}{\text{x }\sqrt{\text{x }}+1}-\dfrac{1}{\sqrt{\text{x}}+1}\right).\dfrac{\text{4 }\sqrt{x}}{3}\)
a.\(A=\dfrac{x^2-4x+4}{x^3-2x^2-\left(4x-8\right)}=\dfrac{\left(x-2\right)^2}{x^2\left(x-2\right)-4\left(x-2\right)}=\dfrac{\left(x-2\right)^2}{\left(x^2-4\right)\left(x-2\right)}=\dfrac{x-2}{\left(x-2\right)\left(x+2\right)}=\dfrac{1}{x+2}\)
\(A=\dfrac{\left(x-2\right)^2}{x^2\left(x-2\right)-4\left(x-2\right)}\left(x\ne\pm2\right)\\ A=\dfrac{\left(x-2\right)^2}{\left(x-2\right)^2\left(x+2\right)}=\dfrac{1}{x+2}\\ B=\dfrac{x+2-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\dfrac{4\sqrt{x}}{3}\left(x>0\right)\\ B=\dfrac{4\sqrt{x}\left(\sqrt{x}+1\right)}{3\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}=\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\)
1, Rút gọn biểu thức: \(A=\dfrac{-3}{4}.\sqrt{9-4\sqrt{5}}.\sqrt{\left(-8\right)^2.\left(2+\sqrt{5}\right)^2}\)
2, Với \(x=\sqrt{4+2\sqrt{3}}\). Tính giá trị biểu thức \(P=x^2-2x+2020\)
Bài 2:
\(x=\sqrt{4+2\sqrt{3}}=\sqrt{3}+1\)
Ta có: \(P=x^2-2x+2020\)
\(=4+2\sqrt{3}-2\left(\sqrt{3}-1\right)+2020\)
\(=4+2\sqrt{3}-2\sqrt{3}+2+2020\)
=2026
Bài 1:
\(A=-\dfrac{3}{4}\cdot\sqrt{9-4\sqrt{5}}\cdot\sqrt{\left(-8\right)^2\cdot\left(2+\sqrt{5}\right)^2}\)
\(=\dfrac{-3}{4}\cdot8\cdot\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)\)
=-6
Bài 1.Rút gọn A = \(\sqrt{x^2+\dfrac{2x^2}{3}}\) với x<0
Bài 2.Rút gọn biểu thức \(\left(\dfrac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\dfrac{\sqrt{30}-\sqrt{6}}{\sqrt{5}-1}\right)\):\(\dfrac{2}{2\sqrt{5}-\sqrt{6}}\)
Bài 3.Cho ba biểu thức A = a\(\sqrt{b}\) + b\(\sqrt{a}\);B = \(a\sqrt{a}-b\sqrt{b}\) ;C = a-b.Trong ba biểu thức trên biểu thức bằng biểu thức \(\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)\) với a,b>0
Bài 7.Cho B = \(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+\dfrac{1}{\sqrt{3}+\sqrt{4}}+...+\dfrac{1}{\sqrt{98}+\sqrt{99}}+\dfrac{1}{\sqrt{99}+\sqrt{100}}\).Giá trị của biểu thức B là
Bài 8.Gọi M là giá trị nhỏ nhất của \(\dfrac{\sqrt{x}+1}{\sqrt{x}+4}\) và N là giá trị lớn nhất của \(\dfrac{\sqrt{x}+5}{\sqrt{x}+2}\).Tìm M và N
Giúp mình với!Mình đang cần gấp
1:
\(A=\sqrt{x^2+\dfrac{2x^2}{3}}=\sqrt{\dfrac{5x^2}{3}}=\left|\sqrt{\dfrac{5}{3}}x\right|=-x\sqrt{\dfrac{5}{3}}\)
2: \(=\left(\dfrac{\sqrt{100}+\sqrt{40}}{\sqrt{5}+\sqrt{2}}+\sqrt{6}\right)\cdot\dfrac{2\sqrt{5}-\sqrt{6}}{2}\)
\(=\dfrac{\left(2\sqrt{5}+\sqrt{6}\right)\left(2\sqrt{5}-\sqrt{6}\right)}{2}\)
\(=\dfrac{20-6}{2}=7\)
Rút gọn biểu thức: A = \(\sqrt{\frac{3\sqrt{3}-4}{2\sqrt{3}+1}}-\sqrt{\frac{\sqrt{3}+4}{5-2\sqrt{3}}}\)
Rút gọn biểu thức:
\(B=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{4+2\sqrt{3}}\)
\(B=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{4+2\sqrt{3}}\)
\(B=\left|\sqrt{3}-1\right|-\sqrt{\left(\sqrt{3}\right)^2+2\cdot\sqrt{3}\cdot1+1^2}\)
\(B=\sqrt{3}-1-\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(B=\sqrt{3}-1-\left|\sqrt{3}+1\right|\)
\(B=\sqrt{3}-1-\sqrt{3}-1\)
\(B=-2\)
\(B=\sqrt{3}-1-\left|\sqrt{3}+1\right|\)
=căn 3-1-căn 3-1
=-2
Cho biểu thức A = \(\dfrac{2}{\sqrt{x}-3}\) + \(\dfrac{2\sqrt{x}}{x-4\sqrt{x}+3}\) + \(\dfrac{\sqrt{x}}{\sqrt{x}-1}\)
a, Rút gọn biểu thức A
b, Tìm x thuộc Z để biểu thức A nhận giá trị nguyên
\(a,A=\dfrac{2\sqrt{x}-2+2\sqrt{x}+x-3\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}\left(x\ge0;x\ne1;x\ne9\right)\\ A=\dfrac{x+\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}\)
\(b,A\in Z\Leftrightarrow\dfrac{\sqrt{x}-3+5}{\sqrt{x}-3}\in Z\Leftrightarrow1+\dfrac{5}{\sqrt{x}-3}\in Z\\ \Leftrightarrow\sqrt{x}-3\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\\ Mà.x\ge0\\ \Leftrightarrow\sqrt{x}\in\left\{2;4;8\right\}\\ \Leftrightarrow x\in\left\{4;16;64\right\}\)
a) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne9\\x\ne1\end{matrix}\right.\)
\(A=\dfrac{2\sqrt{x}-2+2\sqrt{x}+x-3\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}=\dfrac{x+\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}\)
b) \(A=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}=1+\dfrac{5}{\sqrt{x}-3}\in Z\)
\(\Rightarrow\sqrt{x}-3\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
Kết hợp đk
\(\Rightarrow x\in\left\{4;16;64\right\}\)
1. Cho biểu thức: A=\(\left(\frac{x+\sqrt{x}}{\sqrt{x}+1}-\frac{\sqrt{x}-x}{\sqrt{x}-1}\right)\left(1+\frac{1}{\sqrt{x}}\right)\)
a) Rút gọn biểu thức A
b) Tìm giá trị của x để A= 4
2. Rút gọn các biểu thức sau:
a) A= \(3\sqrt{12}-4\sqrt{3}+5\sqrt{27}\)
b) B= \(\frac{1}{\sqrt{7}+4\sqrt{3}}\)
3. Tính giá trị biểu thức D=\(\sqrt[3]{70-\sqrt{4901}}+\sqrt[3]{70+\sqrt{4901}}\)
Rút gọn biểu thức.
a) \(\sqrt{\dfrac{7-4\sqrt{3}}{\sqrt{3}-2}}\)
b) \(\sqrt{\dfrac{5-2\sqrt{6}}{\sqrt{3}-\sqrt{2}}}\)
a: Sửa đề: \(\dfrac{\sqrt{7-4\sqrt{3}}}{\sqrt{3}-2}\)
\(=\dfrac{\sqrt{\left(2-\sqrt{3}\right)^2}}{\sqrt{3}-2}=\dfrac{2-\sqrt{3}}{\sqrt{3}-2}\)
=-1
b: Sửa đề: \(\dfrac{\sqrt{5-2\sqrt{6}}}{\sqrt{3}-\sqrt{2}}\)
\(=\dfrac{\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}}{\sqrt{3}-\sqrt{2}}=\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{3}-\sqrt{2}}\)
=1
Cho biểu thức: \(A=\dfrac{\sqrt{x}-1}{2\sqrt{x}+1}-\dfrac{3}{1-2\sqrt{x}}-\dfrac{4\sqrt{x}+4}{4x-1}\) và \(B=\dfrac{\sqrt{x}-4}{\sqrt{x}}\)với x > 0 , x = 1/4
a. TÍnh giá trị của biểu thức B biết \(x=\sqrt{28-16\sqrt{3}}+2\sqrt{3}\)
b. Rút gọn biểu thức A
a: Ta có: \(x=\sqrt{28-16\sqrt{3}}+2\sqrt{3}\)
\(=4-2\sqrt{3}+2\sqrt{3}\)
=4
Thay x=4 vào B, ta được:
\(B=\dfrac{2-4}{2}=-1\)