Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kun ZERO
Xem chi tiết
Kun ZERO
20 tháng 5 2020 lúc 17:53

\(\left\{{}\begin{matrix}x_0-my_0=2-4m\\mx_0+y_0=3m+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0-2=m\left(y_0-4\right)\\y_0-1=m\left(3-x_0\right)\end{matrix}\right.\)

\(\left\{{}\begin{matrix}\left(x_0-2\right)\left(3-x_0\right)=m\left(y_0-4\right)\left(3-x_0\right)\\\left(y_0-1\right)\left(y_0-4\right)=m\left(y_0-4\right)\left(3-x_0\right)\end{matrix}\right.\)

\(\Rightarrow\left(x_0-2\right)\left(3-x_0\right)=\left(y_0-1\right)\left(y_0-4\right)\)

quynhu
Xem chi tiết
๖ACE✪Hoàngミ★Việtツ
Xem chi tiết
Đinh Đức Hùng
26 tháng 9 2017 lúc 14:53

\(x^3+y^3+1=3xy\)

\(\Leftrightarrow\left(x^3+3x^2y+3xy^2+y^3\right)+1=3xy+3x^2y+3xy^2\)

\(\Leftrightarrow\left(x+y\right)^3+1=3xy\left(1+x+y\right)\)

\(\Leftrightarrow\left(x+y+1\right)\left[\left(x+y\right)^2-\left(x+y\right)+1\right]=3xy\left(1+x+y\right)\)

\(\left(x+y+1\right)\left(x^2+y^2+2xy-x-y+1\right)-3xy\left(1+x+y\right)=0\)

\(\Leftrightarrow\left(x+y+1\right)\left(x^2+y^2-xy-x-y+1\right)=0\)

Với \(x+y+1\ne0\) thì \(x^2+y^2-xy-x-y+1=0\)

\(\Leftrightarrow x^2+y^2-xy-x-y+1=0\)

\(\Leftrightarrow2x^2+2y^2-2xy-2x-2y+2=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2=0\Rightarrow x=y=1\)(thỏa mãn \(x+y+1\ne0\))

\(\Rightarrow P=\left(1+\frac{x_0}{y_0}\right)\left(1+y_0\right)\left(1+\frac{1}{x_0}\right)=\left(1+\frac{1}{1}\right)\left(1+1\right)\left(1+\frac{1}{1}\right)=8\)

Phan Nghĩa
26 tháng 9 2017 lúc 14:43

Trần Hoàng Việt  thế này có đúng ko ạ? 

\(\hept{\begin{cases}x=3\\y=3\end{cases}\Rightarrow}3=a.1\Rightarrow a=3\)

\(Px_o,y_o\in y=3x\Rightarrow y_o=3.x_o\)

\(P=\frac{x_o+1}{3x_o+1}=\frac{x_o+1}{3"x_o+1"}\)

\(\hept{\begin{cases}x_o=-1\Rightarrow P=kXD\\x_o\ne-1\Rightarrow P=\frac{1}{3}\end{cases}}\)

P/s: Ko chắc :D

Kinder
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 12 2020 lúc 22:22

\(\left(a^2+b^2+c^2+1\right)x=ab+bc+ca\)

\(\Leftrightarrow x=\dfrac{ab+bc+ca}{a^2+b^2+c^2+1}\)

Ta có:

\(x^2-1=\dfrac{\left(ab+bc+ca\right)^2}{\left(a^2+b^2+c^2+1\right)^2}-1=\dfrac{\left(ab+bc+ca-a^2-b^2-c^2-1\right)\left(ab+bc+ca+a^2+b^2+c^2+1\right)}{\left(a^2+b^2+c^2+1\right)^2}\)

\(=\dfrac{\left[-\left(a-b\right)^2-\left(b-c\right)^2-\left(c-a\right)^2-2\right]\left[\left(a+b+c\right)^2+a^2+b^2+c^2+2\right]}{4\left(a^2+b^2+c^2+1\right)^2}< 0\)

\(\Rightarrow x^2-1< 0\Rightarrow\left|x\right|< 1\)

Mai Thành Đạt
Xem chi tiết
Đinh Phương Nga
5 tháng 3 2017 lúc 21:08

Lấy pt 1 cộng vế với vế của pt 2 ta được

\(2x+y+x-y=m+2+m\Leftrightarrow3x=2m+2\Leftrightarrow x=\dfrac{2m+2}{3}\)

từ pt 2 ta suy ra \(y=\dfrac{-m+2}{3}\)

Để hpt có nghiệm \(x_0,y_0\) thoả mãn đk đề bài thì \(\dfrac{-m+2}{3}+\dfrac{2m+2}{3}=3\Leftrightarrow\dfrac{m+4}{3}=3\Leftrightarrow m=5\)

Vậy ..........

Phu Vo
4 tháng 3 2017 lúc 18:59

m=5

Phu Vo
4 tháng 3 2017 lúc 19:01

lay tren tru duoi dc x+2y=2 ma x+y=3 suy ra y=-1 (moi tham gia chua ranh )

Nguyen Thi Phung
Xem chi tiết
Buddy
Xem chi tiết
Hà Quang Minh
22 tháng 9 2023 lúc 14:53

Ta có: \(\mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = f'\left( {{x_0}} \right);\mathop {\lim }\limits_{x \to {x_0}} \frac{{g\left( x \right) - g\left( {{x_0}} \right)}}{{x - {x_0}}} = g'\left( {{x_0}} \right)\)

Vậy \(h'\left( {{x_0}} \right) = f'\left( {{x_0}} \right) + g'\left( {{x_0}} \right)\).

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
22 tháng 9 2023 lúc 21:25

Theo em ý kiến của bạn Nam là đúng.

Ta có: Hàm số \(y = f\left( x \right)\) liên tục tại điểm \({x_0}\) nên \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\)

Hàm số \(y = g\left( x \right)\) không liên tục tại \({x_0}\) nên \(\mathop {\lim }\limits_{x \to {x_0}} g\left( x \right) \ne g\left( {{x_0}} \right)\)

Do đó \(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right) + g\left( x \right)} \right] = \mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) + \mathop {\lim }\limits_{x \to {x_0}} g\left( x \right) \ne f\left( {{x_0}} \right) + g\left( {{x_0}} \right)\)

Vì vậy hàm số không liên tục tại x0.

Sách Giáo Khoa
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 5 2022 lúc 22:28

undefined

Buddy
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 8 2023 lúc 0:40

a: \(f'\left(x_0\right)=\lim\limits_{x\rightarrow x0}\dfrac{f\left(x\right)-f\left(x0\right)}{x-x0}=\lim\limits_{x\rightarrow x0}\dfrac{c-c}{x-x0}=0\)

b: \(f'\left(x0\right)=\lim\limits_{x\rightarrow x0}\dfrac{f\left(x\right)-f\left(x0\right)}{x-x0}=\lim\limits_{x\rightarrow x0}\dfrac{x-x0}{x-x0}=1\)