Chứng minh \(x\sqrt{2-x^2}\le1\left(x\ge0\right)\) bằng cách áp dụng bất đẳng thức côsi
áp dụng BĐT côsi tìm gtln
\(2\sqrt{1-x}+x\left(x\le1\right)\)
Áp dụng bđt Cô-si:
\(2.1.\sqrt{1-x}+x\le2.\dfrac{1+1-x}{2}+x=2\)
Dấu "=" xảy ra khi và chỉ khi \(\sqrt{1-x}=1\) <=> x = 0
\(2.1.\sqrt{1-x}+x\le1+1-x+x=2\)
Dấu "=" xảy ra khi \(1=1-x\Rightarrow x=0\)
Áp dụng bất đẳng thức Côsi tìm GTNN của
\(x+\dfrac{16}{x-1}\left(x>1\right)\)
\(x+\dfrac{16}{x-1}\\ =x-1+\dfrac{16}{x-1}+1\)
Áp dụng BĐT Cô-si ta có:
\(x-1+\dfrac{16}{x-1}+1\\
\ge2\sqrt{\left(x-1\right).\dfrac{16}{x-1}}+1\\
=2\sqrt{16}+1\\
=9\)
Dấu "=" xảy ra
\(\Leftrightarrow x-1=\dfrac{16}{x-1}\\ \Leftrightarrow\left(x-1\right)^2=16\\ \Leftrightarrow\left[{}\begin{matrix}x-1=4\\x-1=-4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\)
giải phương trình bằng cách dùng bất đẳng thức côsi
\(\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y}+\sqrt{z}=3\\\left(1+x\right)\left(1+y\right)\left(1+z\right)=\left(1+\sqrt[3]{xyz}\right)^3\end{matrix}\right.\)
Lời giải:
ĐK: $x,y,z\geq 0$
Áp dụng BĐT Cô-si:
\(\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\geq 3\sqrt[3]{\frac{xyz}{(x+1)(y+1)(z+1)}}\)
\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\geq 3\sqrt[3]{\frac{1}{(x+1)(y+1)(z+1)}}\)
Cộng theo vế và thu gọn:
\(3\geq 3.\frac{\sqrt[3]{xyz}+1}{\sqrt[3]{(x+1)(y+1)(z+1)}}\Leftrightarrow (x+1)(y+1)(z+1)\geq (1+\sqrt[3]{xyz})^3\)
Dấu "=" xảy ra khi $x=y=z$
Thay vào pt $(1)$ thì suy ra $x=y=z=1$
Áp dụng bất đẳng thức Cauchy tìm giá trị nhỏ nhất:
\(D=\sqrt{x}+\frac{9}{\sqrt{x}+2}\left(x\ge0\right)\)
\(E=\frac{x+1}{\sqrt{x}}\left(x>0\right)\)
\(F=\sqrt{x}-2+\frac{4}{\sqrt{x}+2}\left(x\ge0\right)\)
\(G=\frac{x}{\sqrt{x}+2}\left(x>0\right)\)
\(H=\frac{x-5}{\sqrt{x}+2}\left(x\ge0\right)\)
:V
Câu đầu cho x > 0 thì dễ hơn ......
Sử dụng BĐT AM - GM ta dễ có:\(D=\sqrt{x}+\frac{9}{\sqrt{x}+2}=\sqrt{x}+2+\frac{9}{\sqrt{x}+2}-2\ge2\sqrt{\left(\sqrt{x}+2\right)\cdot\frac{9}{\sqrt{x}+2}}-2=4\)
Đẳng thức xảy ra tại x=1
\(E=\frac{x+1}{\sqrt{x}}\ge\frac{2\sqrt{x}}{\sqrt{x}}=2\) Đẳng thức xảy ra tại x=1
Làm 2 cái thôi còn lại tương tự bạn nhé :)
+ Ta có: \(D=\sqrt{x}+\frac{9}{\sqrt{x}+2}\)
\(D=\sqrt{x}+2+\frac{9}{\sqrt{x}+2}-2\)
Áp dụng bất đẳng thức Cô-si cho phương trình \(\sqrt{x}+2+\frac{9}{\sqrt{x}+2}\) ta có:
\(\sqrt{x}+2+\frac{9}{\sqrt{x}+2}\ge\sqrt{\left(\sqrt{x}+2\right).\left(\frac{9}{\sqrt{x}+2}\right)}=\sqrt{9}=3\)
\(\Rightarrow\)\(D\ge3-2=1\)
Dấu bằng xảy ra khi và chỉ khi: \(\sqrt{x+2}=\frac{9}{\sqrt{x}+2}\)
\(\Leftrightarrow\left(\sqrt{x}+2\right)^2=9\)
\(\Leftrightarrow\sqrt{x}+2=\pm3\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}+2=-3\\\sqrt{x}+2=3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=-5\left(L\right)\\\sqrt{x}=1\end{cases}}\)
\(\Leftrightarrow x=\pm1\)
Vậy \(S=\left\{\pm1\right\}\)
Chứng minh đẳng thức:
a) \(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2=\sqrt{xy}\left(x\ge0,y\ge0,x^2+y^2\ne0\right)\)
b) \(\left(\dfrac{1}{a-\sqrt{a}}+\dfrac{1}{\sqrt{a}-1}\right):\dfrac{\sqrt{a}+1}{a-2\sqrt{a}+1}\left(a\ge0,a\ne1\right)\)
c) \(\sqrt{x+2\sqrt{x-2}-1}\left(\sqrt{x-2}-1\right):\left(\sqrt{x}-\sqrt{3}\right)=\sqrt{x}+\sqrt{3}\left(x\ge2,x\ne3\right)\)
a: \(=x-\sqrt{xy}+y-x+2\sqrt{xy}-y=\sqrt{xy}\)
b: \(=\dfrac{1+\sqrt{a}}{a-\sqrt{a}}\cdot\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}=\dfrac{\sqrt{a}-1}{\sqrt{a}}\)
Chứng minh rằng với các số a,b thỏa mãn \(\left|a\right|\le1,\left|b\right|\le1\) ta có bất đẳng thức \(\sqrt{1-a^2}+\sqrt{1-b^2}\le2\sqrt{1-\left(\frac{a+b}{2}\right)^2}\)
Chứng minh các đẳng thức sau:
a) \(\left(1+\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\right)\left(1-\dfrac{x-\sqrt{x}}{\sqrt{x}-1}\right)=1-x\)
(Với \(x\ge0;x\ne1\))
b) \(\dfrac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}+\dfrac{a-b}{\sqrt{a}-b}=2\sqrt{a}\)
(Với a>0; b>0; \(a\ne b\))
Câu b bạn sửa lại đề
\(a,VT=\left[1+\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right]\left[1-\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right]\\ =\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)=1-x=VP\\ b,VT=\dfrac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}+\dfrac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\\ =\sqrt{a}-\sqrt{b}+\sqrt{a}+\sqrt{b}=2\sqrt{a}=VP\)
a: \(=\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)=1-x\)
Chứng minh với mọi x, y \(\in R\), bất đẳng thức sau luôn đúng:
\(\left(x+y\right)^2+1-xy\ge\sqrt{3}\left(x+y\right)\)
Dễ thấy:
\(VT\ge\left(x+y\right)^2+1-\dfrac{\left(x+y\right)^2}{4}=\dfrac{3\left(x+y\right)^2}{4}+1\)
Áp dụng Cô-si:
\(\dfrac{3\left(x+y\right)^2}{4}+1\ge2\sqrt{\dfrac{3\left(x+y\right)^2}{4}.1}=\sqrt{3}\left|x+y\right|\ge\sqrt{3}\left(x+y\right)\)
Do đó:
\(\left(x+y\right)^2+1-xy\ge\sqrt{3}\left(x+y\right),\forall x,y\in R\)
Giúp mình với!!! Bài này về bất đẳng thức Cauchy ak!!!
1. Cho x > 1 hãy tìm GTNN của:
P=\(\dfrac{x}{\sqrt{x}-1}\)
2. Tìm GTNN của:
B=\(\dfrac{x+15}{\sqrt{x}+3}+\dfrac{1}{\sqrt{x}+3}\)
\(\left(x\ge0;x\ne1,x\ne9\right)\)
`1. P = x/(sqrt x-1)`
`= (x-1+1)/(sqrtx-1)`
`= ((sqrt x+1)(sqrt x-1))/(sqrt x-1) +1/(sqrt x-1)`
`= sqrt x+1 + 1/(sqrt x-1)`
`= sqrtx-1 + 1/(sqrt x-1) + 2 >= 4`.
ĐTXR `<=> (sqrtx-1)^2 = 1`.
`<=> x =4` hoặc `x = 0 ( ktm)`.
Vậy Min A `= 4 <=> x= 4`.
1) \(P=\dfrac{x}{\sqrt{x}-1}=\dfrac{(x-\sqrt{x})+(\sqrt{x}-1)+1}{\sqrt{x}-1}=\sqrt{x}+\dfrac{1}{\sqrt{x}-1}+1\)
\(=\sqrt{x}-1+\dfrac{1}{\sqrt{x}-1}+2\)
Với x>1\(\Rightarrow\left\{{}\begin{matrix}\sqrt{x}-1>0\\\dfrac{1}{\sqrt{x}-1}>0\end{matrix}\right.\)
Áp dụng BĐT AM-GM cho 2 số dương \(\sqrt{x}-1\) và \(\dfrac{1}{\sqrt{x}-1}\), ta có:
\(\sqrt{x}-1+\dfrac{1}{\sqrt{x}-1}\ge2\sqrt{(\sqrt{x}-1).\dfrac{1}{\sqrt{x}-1}}=2\)
\(\Rightarrow P\ge2+2=4\)
Dấu = xảy ra khi: \(\sqrt{x}-1=1\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\left(tm\right)\)
KL;....
2:
\(B=\dfrac{x+16}{\sqrt{x}+3}=\dfrac{x-9+25}{\sqrt{x}+3}\)
\(=\sqrt{x}-3+\dfrac{25}{\sqrt{x}+3}=\sqrt{x}+3+\dfrac{25}{\sqrt{x}+3}-6\)
=>\(B>=2\cdot\sqrt{25}-6=4\)
Dấu = xảy ra khi (căn x+3)^2=25
=>căn x+3=5
=>căn x=2
=>x=4