CHo tam giác ABC có điểm M thuộc cạnh BC. CHứng minh rằng \(\overrightarrow{AM}=\frac{MC}{BC}\overrightarrow{AB}+\frac{MB}{BC}\overrightarrow{AC}\)
Cho tam giác đều ABC, AB = 2a. Gọi M là trung điểm của cạnh BC.
a, Chứng minh rằng: \(\overrightarrow{AB}+\overrightarrow{MB}+\overrightarrow{MA}=\overrightarrow{0}\)
b, Tính \(\left|\overrightarrow{AM}+\overrightarrow{AC}\right|\) theo a?
c, Tìm vị trí điểm N thỏa mãn: \(3\overrightarrow{NA}+3\overrightarrow{NB}+2\overrightarrow{NC}=\overrightarrow{0}\)
Có vẻ không đúng.
Giả sử \(\overrightarrow{AB}+\overrightarrow{MB}+\overrightarrow{MA}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{MB}+\left(\overrightarrow{MA}+\overrightarrow{AB}\right)=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{MB}+\overrightarrow{MB}=\overrightarrow{0}\)
\(\Leftrightarrow2\overrightarrow{MB}=\overrightarrow{0}\)
\(\Leftrightarrow M\equiv B\) (Vô lí)
Hình vẽ:
a, Chứng minh \(\overrightarrow{AB}+\overrightarrow{BM}+\overrightarrow{MA}=\overrightarrow{0}\)
Ta có \(\overrightarrow{AB}+\overrightarrow{BM}+\overrightarrow{MA}=\overrightarrow{BM}+\left(\overrightarrow{MA}+\overrightarrow{AB}\right)=\overrightarrow{BM}+\overrightarrow{MB}=\overrightarrow{0}\)
b, Gọi H là trung điểm \(MC\)
Ta có \(AM=\sqrt{AC^2-MC^2}=\sqrt{4a^2-a^2}=a\sqrt{3}\)
\(AH=\sqrt{AM^2+MH^2}=\sqrt{\left(a\sqrt{3}\right)^2+\left(\dfrac{a}{2}\right)^2}=a.\dfrac{\sqrt{13}}{2}\)
\(\left|\overrightarrow{AM}+\overrightarrow{AC}\right|=\left|2\overrightarrow{AH}\right|=2AH=a\sqrt{13}\)
c, Gọi D là trung điểm AB
\(3\overrightarrow{NA}+3\overrightarrow{NB}+2\overrightarrow{NC}=3\left(\overrightarrow{NA}+\overrightarrow{NB}\right)+2\overrightarrow{NC}=6\overrightarrow{ND}+2\overrightarrow{NC}=\overrightarrow{0}\)
\(\Rightarrow\overrightarrow{NC}=3\overrightarrow{DN}\)
Vậy N thuộc đoạn CD sao cho \(CN=\dfrac{3}{4}CD\)
Cho ΔABC, M là 1 điểm trên cạnh BC sao cho MB = 2MC. Chứng minh rằng:
\(\overrightarrow{AM}\)= \(\frac{1}{3}\overrightarrow{AB}+\frac{2}{3}\overrightarrow{AC}\)
Hình bạn tự vẽ :
AM=AB+BM
=AB+2/3BC
=AB +2/3(BA+AC)
=AB-2/3AB+2/3C
= 1/3 AB + 2/3AC
cho tam giác ABC, gọi M là điểm trên cạnh BC sao cho\(\overrightarrow{MB}=2\overrightarrow{MC}\) . Chứng minh: \(\overrightarrow{AM}=\dfrac{1}{3}\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{AC}\)
\(\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{BM}\)
\(=\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{BC}\)
\(=\overrightarrow{AB}+\dfrac{2}{3}\left(\overrightarrow{BA}+\overrightarrow{AC}\right)\)
\(=\dfrac{1}{3}\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{AC}\)
Cho tam giác ABC có cạnh BC = a, AC = b, AB = c. Tìm vị trí điểm M để:
\(\overrightarrow{MA}.\overrightarrow{MB}+\overrightarrow{MB}.\overrightarrow{MC}+\overrightarrow{MC}.\overrightarrow{MA}\) đạt giá trị nhỏ nhất.
Cho tam giác ABC, gọi M là điểm thuộc cạnh BC sao cho MB = 2 MC, biểu diễn \(\overrightarrow{AM}=m\overrightarrow{AB}+n\overrightarrow{AC}\). Giá trị m.n bằng...
\(\overrightarrow{MB}=-2\overrightarrow{MC}\Leftrightarrow\overrightarrow{MB}=-2\left(\overrightarrow{MB}+\overrightarrow{BC}\right)\)
\(\Rightarrow3\overrightarrow{MB}=-2\overrightarrow{BC}\Rightarrow\overrightarrow{BM}=\frac{2}{3}\overrightarrow{BC}=\frac{2}{3}\left(\overrightarrow{BA}+\overrightarrow{AC}\right)=-\frac{2}{3}\overrightarrow{AB}+\frac{2}{3}\overrightarrow{AC}\)
\(\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{BM}=\overrightarrow{AB}-\frac{2}{3}\overrightarrow{AB}+\frac{2}{3}\overrightarrow{AC}=\frac{1}{3}\overrightarrow{AB}+\frac{2}{3}\overrightarrow{AC}\)
\(\Rightarrow\left\{{}\begin{matrix}m=\frac{1}{3}\\n=\frac{2}{3}\end{matrix}\right.\) \(\Rightarrow mn=\frac{2}{9}\)
Cho tam giác ABC có các cạnh AB = c, AC = b, BC = a. Tìm điểm M sao
cho vecto a\(\overrightarrow{MA}\) + b\(\overrightarrow{MB}\) + c\(\overrightarrow{MC}\) có độ dài nhỏ nhất?
Chị ơi giúp e cái này tìm 3 giá trị của x sao cho 0,6<x<0,61
Gọi I là tâm đường tròn nội tiếp tam giác ABC
\(\Rightarrow a\overrightarrow{IA}+b\overrightarrow{IB}+c\overrightarrow{IC}=0\)
Ta có:
\(A=\left|a\overrightarrow{MA}+b\overrightarrow{MB}+c\overrightarrow{MC}\right|=\left|\left(a+b+c\right)\overrightarrow{MI}+a\overrightarrow{IA}+b\overrightarrow{IB}+c\overrightarrow{IC}\right|\)
\(=\left|\left(a+b+c\right)\overrightarrow{MI}\right|=\left(a+b+c\right).MI\)
\(Amin\Leftrightarrow MImin\)
\(\Leftrightarrow\) M trùng I
Trên cạnh BC của tam giác ABC lấy điểm M sao cho MB = 3 MC.
a) Tìm mối liên hệ giữa hai vectơ \(\overrightarrow {MB} \) và \(\overrightarrow {MC} \)
b) Biểu thị vectơ \(\overrightarrow {AM} \) theo hai vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {AC} \).
Tham khảo:
a) M thuộc cạnh BC nên vectơ \(\overrightarrow {MB} \) và \(\overrightarrow {MC} \) ngược hướng với nhau.
Lại có: MB = 3 MC \( \Rightarrow \overrightarrow {MB} = - 3.\overrightarrow {MC} \)
b) Ta có: \(\overrightarrow {AM} = \overrightarrow {AB} + \overrightarrow {BM} \)
Mà \(BM = \dfrac{3}{4}BC\) nên \(\overrightarrow {BM} = \dfrac{3}{4}\overrightarrow {BC} \)
\( \Rightarrow \overrightarrow {AM} = \overrightarrow {AB} + \dfrac{3}{4}\overrightarrow {BC} \)
Lại có: \(\overrightarrow {BC} = \overrightarrow {AC} - \overrightarrow {AB} \) (quy tắc hiệu)
\( \Rightarrow \overrightarrow {AM} = \overrightarrow {AB} + \dfrac{3}{4}\left( {\overrightarrow {AC} - \overrightarrow {AB} } \right) = \dfrac{1}{4}.\overrightarrow {AB} + \dfrac{3}{4}.\overrightarrow {AC} \)
Vậy \(\overrightarrow {AM} = \dfrac{1}{4}.\overrightarrow {AB} + \dfrac{3}{4}.\overrightarrow {AC} \)
Cho tam giác ABC. Điểm M nằm trên cạnh BC sao cho MB = 2MC. Hãy phân tích vectơ \(\overrightarrow{AM}\) qua 2 vecto \(\overrightarrow{AB,}\overrightarrow{AC}\)
Lời giải:
Theo đề ta có: $\overrightarrow{BM}=2\overrightarrow{MC}=-2\overrightarrow{CM}$
$\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{BM}(1)$
$=\overrightarrow{AB}-2\overrightarrow{CM}$
$\overrightarrow{AM}=\overrightarrow{AC}+\overrightarrow{CM}$
$\Rightarrow 2\overrightarrow{AM}=2\overrightarrow{AC}+2\overrightarrow{CM}(2)$
Lấy $(1)+(2)\Rightarrow 3\overrightarrow{AM}=\overrightarrow{AB}+2\overrightarrow{AC}$
$\Rightarrow \overrightarrow{AM}=\frac{1}{3}\overrightarrow{AB}+\frac{2}{3}\overrightarrow{AC}$
Cho tam giác ABC có trọng tâm G. Gọi M thuộc cạnh BC sao cho \(MB=2MC\). Chứng minh:
a) \(\overrightarrow{AB}+2\overrightarrow{AC}=\overrightarrow{3AM}\)
b) \(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=3\overrightarrow{MG}\)
a;\(\overrightarrow{AB}+2\overrightarrow{AC}\)
\(=\overrightarrow{AM}+\overrightarrow{MB}+2\overrightarrow{AM}+2\overrightarrow{MC}\)
\(=3\overrightarrow{AM}\)
b: \(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\)
\(=\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{MG}+\overrightarrow{GB}+\overrightarrow{MG}+\overrightarrow{GC}\)
=3vecto MG