Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Athena
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 6 2021 lúc 23:26

b) Ta có: \(B=x^2+2x+y^2-4y+6\)

\(=x^2+2x+1+y^2-4y+4+1\)

\(=\left(x+1\right)^2+\left(y-2\right)^2+1\ge1\forall x,y\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)

Vậy: \(B_{min}=1\) khi (x,y)=(-1;2)

c) Ta có: \(C=4x^2+4x+9y^2-6y-5\)

\(=4x^2+4x+1+9y^2-6y+1-7\)

\(=\left(2x+1\right)^2+\left(3y-1\right)^2-7\ge-7\forall x,y\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=\dfrac{1}{3}\end{matrix}\right.\)

Vậy: \(C_{min}=-7\) khi \(\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=\dfrac{1}{3}\end{matrix}\right.\)

 

missing you =
29 tháng 6 2021 lúc 23:50

\(A=2x^2+x=2\left(x^2+\dfrac{1}{2}x\right)=2\left(x^2+2.\dfrac{1}{4}x+\dfrac{1}{16}-\dfrac{1}{16}\right)\)

\(=2\left[\left(x+\dfrac{1}{4}\right)^2-\dfrac{1}{16}\right]\ge-\dfrac{1}{8}\) dấu"=' xảy ra<=>x=\(-\dfrac{1}{4}\)

\(B=x^2+2x+y^2-4y+6\)

\(=x^2+2x+1+y^2-4y+4+1=\left(x+1\right)^2+\left(y-2\right)^2+1\)

\(\ge1\) dấu"=" xảy ra<=>x=-1;y=2

\(C=4x^2+4x+9y^2-6y-5\)

\(=4x^2+4x+1+9y^2-6y+1-7\)

\(=\left(2x+1\right)^2+\left(3y-1\right)^2-7\ge-7\)

dấu"=" xảy ra<=>x=\(-\dfrac{1}{2},y=\dfrac{1}{3}\)

\(D=\left(2+x\right)\left(x+4\right)-\left(x-1\right)\left(x+3\right)^2\)

=\(x^2+6x+8-\left(x-1\right)\left(x+3\right)^2\)

\(=\left(x+3\right)^2-1-\left(x-1\right)\left(x+3\right)^2\)

\(=\left(x+3\right)^2\left(2-x\right)-1\ge-1\)

dấu"=" xảy ra\(< =>\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)

....
Xem chi tiết
ILoveMath
24 tháng 8 2021 lúc 8:47

a) A = x2 - 2x + 1 - y2 + 2x - 1 

       = (x2 - 2x + 1)-( y2-2x+1) 

       = (x-1)2-(y-1)2

       = (x-1-y+1)(x-1+y-1)
b) A = x2 - 4x + 4 - y2 - 6y - 9

        = (x2 - 4x + 4)-(y2+6y+9)

        = (x-2)2-(y+3)2

        = (x-2-y-3)(x-2+y+3)
c) A = 4x2 - 4x + 1 - y2 - 8y - 16

       = (4x2 - 4x + 1) - (y2+8y+16)

       = (2x-1)2-(y+4)2

       = (2x-1-y-4)(2x-1+y+4)

d) A = x2 - 2xy + y2 - z2 + 2zt - t2

       =(x2 - 2xy + y2)-(z2- 2zt + t2)

      = (x-y)2-(z-t)2

       =(x-y-z+t)(z-y+z-t)

câu d mik có sửa lại đề vì mik thấy đề hơi sai

scotty
24 tháng 8 2021 lúc 8:58

a) A =

= x2 - y2 + 2x - 2x + 1 - 1

= x2 - y = (x-y) (x+y)

b) A=

= (x-2)2 - (y+3)2 = (x-y-5) (x+y+1)

c) A=

= (2x-1)2 - (y+4)2

= (2x+y+3) (2x-y-5)

d) đề có thể sai

 

Văn Thị Kim Chi
Xem chi tiết
Trần Hương Trà
Xem chi tiết
Trúc Giang
19 tháng 8 2021 lúc 9:34

undefined

Lấp La Lấp Lánh
19 tháng 8 2021 lúc 9:39

\(A=\left(6x-3y\right)+\left(4x^2-4xy+y^2\right)=3\left(2x-y\right)+\left(2x-y\right)^2=\left(2x-y\right)\left(2+2x-y\right)\)

\(B=9x^2-\left(y^2-4y+4\right)=9x^2-\left(y-2\right)^2=\left(3x-y+2\right)\left(3x+y-2\right)\)

\(C=-25x^2+y^2-6y+9=\left(y^2-6y+9\right)-25x^2=\left(y-3\right)^2-\left(5x\right)^2=\left(y-3-5x\right)\left(y-3+5x\right)\)\(D=x^2-4x-y^2-8y-12=\left(x^2-4x+4\right)-\left(y^2+8y+16\right)=\left(x-2\right)^2-\left(y+4\right)^2=\left(x-2-y-4\right)\left(x-2+y+4\right)=\left(x-y-6\right)\left(x+y+2\right)\)

Nguyễn Lê Phước Thịnh
19 tháng 8 2021 lúc 14:45

a: Ta có: \(A=\left(6x-3y\right)+\left(4x^2-4xy+y^2\right)\)

\(=3\left(2x-y\right)+\left(2x-y\right)^2\)

\(=\left(2x-y\right)\left(2x-y+3\right)\)

b: Ta có: \(B=9x^2-\left(y^2-4y+4\right)\)

\(=9x^2-\left(y-2\right)^2\)

\(=\left(3x-y+2\right)\left(3x+y-2\right)\)

Nguyễn Hoàng Minh
11 tháng 10 2021 lúc 15:51

\(=\left(2x-3y\right)\left(2x+3y\right)+2\left(2x-3y\right)=\left(2x-3y\right)\left(2x+3y+2\right)\)

Vinh Thuy Duong
Xem chi tiết
missing you =
17 tháng 6 2021 lúc 7:27

\(a,-x^2+2x+5=-\left(x^2-2x-5\right)=-\left(x^2-2x+1-6\right)=-\left(x-1\right)^2+6\le6\)

dấu'=' xảy ra<=>x=1=>Max A=6

\(b,B=-x^2-y^2+4x+4y+2=-x^2+4x-4-y^2+4x-4+10\)

\(=-\left(x^2-4x+4\right)-\left(y^2-4x+4\right)+10\)

\(=-\left(x-2\right)^2-\left(y-2\right)^2+10=-\left[\left(x-2\right)^2+\left(y-2\right)^2\right]+10\le10\)

dấu"=" xảy ra<=>x=y=2=>Max B=10

\(c,C=x^2+y^2-2x+6y+12=\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\)

dấu'=' xảy ra<=>x=1,y=-3=>MinC=2

 

 

 

 

Xem chi tiết
Nguyễn Việt Lâm
15 tháng 12 2020 lúc 22:26

a.

\(1-4x^2=\left(1-2x\right)\left(1+2x\right)\)

b.

\(8-27x^3=\left(2\right)^3-\left(3x\right)^3=\left(2-3x\right)\left(4+6x+9x^2\right)\)

c.

\(27+27x+9x^2+x^3=x^3+3.x^2.3+3.3^2.x+3^3\)

\(=\left(x+3\right)^3\)

d.

\(2x^3+4x^2+2x=2x\left(x^2+2x+1\right)=2x\left(x+1\right)^2\)

e.

\(x^2-y^2-5x+5y=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)\)

\(=\left(x-y\right)\left(x+y-5\right)\)

f.

\(x^2-6x+9-y^2=\left(x-3\right)^2-y^2=\left(x-3-y\right)\left(x-3+y\right)\)

misen
1 tháng 7 2021 lúc 16:29

g. 10x(x-y)-6y(y-x)

=10x(x-y)+6y(x-y)

=(x-y)(10x+6y)

h.x2-4x-5

=(x-5)(x+1)

i.x4-y= (x2-y2)(x2+y2)

 

 

misen
1 tháng 7 2021 lúc 16:36

B2.

a.5(x-2)=x-2

⇔5(x-2)-(x-2)=0

⇔4(x-2)=0

⇔x=2

b.3(x-5)=5-x

⇔3(x-5)+(x-5)=0

⇔4(x-5)=0

⇔x=5

c.(x+2)2-(x+2)(x-2)=0

⇔(x+2)[(x+2)-(x-2)]=0

⇔4(x+2)=0

⇔x=-2

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
13 tháng 3 2019 lúc 2:36

a) A = 10000.                b) B = 2100.

Hoàng văn tiến
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 12 2023 lúc 19:34

10: \(x\left(x-y\right)+x^2-y^2\)

\(=x\left(x-y\right)+\left(x-y\right)\left(x+y\right)\)

\(=\left(x-y\right)\left(x+x+y\right)\)

\(=\left(x-y\right)\left(2x+y\right)\)

11: \(x^2-y^2+10x-10y\)

\(=\left(x^2-y^2\right)+\left(10x-10y\right)\)
\(=\left(x-y\right)\left(x+y\right)+10\left(x-y\right)\)

\(=\left(x-y\right)\left(x+y+10\right)\)

12: \(x^2-y^2+20x+20y\)

\(=\left(x^2-y^2\right)+\left(20x+20y\right)\)

\(=\left(x-y\right)\left(x+y\right)+20\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y+20\right)\)

13: \(4x^2-9y^2-4x-6y\)

\(=\left(4x^2-9y^2\right)-\left(4x+6y\right)\)

\(=\left(2x-3y\right)\left(2x+3y\right)-2\left(2x+3y\right)\)

\(=\left(2x+3y\right)\left(2x-3y-2\right)\)

14: \(x^3-y^3+7x^2-7y^2\)

\(=\left(x^3-y^3\right)+\left(7x^2-7y^2\right)\)

\(=\left(x-y\right)\left(x^2+xy+y^2\right)+7\cdot\left(x^2-y^2\right)\)

\(=\left(x-y\right)\left(x^2+xy+y^2\right)+7\left(x-y\right)\left(x+y\right)\)

\(=\left(x-y\right)\left(x^2+xy+y^2+7x+7y\right)\)

15: \(x^3+4x-\left(y^3+4y\right)\)

\(=x^3-y^3+4x-4y\)

\(=\left(x^3-y^3\right)+\left(4x-4y\right)\)

\(=\left(x-y\right)\left(x^2+xy+y^2\right)+4\left(x-y\right)\)

\(=\left(x-y\right)\left(x^2+xy+y^2+4\right)\)

16: \(x^3+y^3+2x+2y\)

\(=\left(x^3+y^3\right)+\left(2x+2y\right)\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)+2\left(x+y\right)\)

\(=\left(x+y\right)\left(x^2-xy+y^2+2\right)\)

17: \(x^3-y^3-2x^2y+2xy^2\)

\(=\left(x^3-y^3\right)-\left(2x^2y-2xy^2\right)\)

\(=\left(x-y\right)\left(x^2+xy+y^2\right)-2xy\left(x-y\right)\)

\(=\left(x-y\right)\left(x^2+xy+y^2-2xy\right)\)

\(=\left(x-y\right)\left(x^2-xy+y^2\right)\)

18: \(x^3-4x^2+4x-xy^2\)

\(=x\left(x^2-4x+4-y^2\right)\)

\(=x\left[\left(x^2-4x+4\right)-y^2\right]\)

\(=x\left[\left(x-2\right)^2-y^2\right]\)

\(=x\left(x-2-y\right)\left(x-2+y\right)\)

Hoàng văn tiến
8 tháng 12 2023 lúc 19:36

Phân tích đa thức thành nhân tử nha

Kwalla
Xem chi tiết
Toru
23 tháng 8 2023 lúc 16:14

\(a,A=y^2-\dfrac{1}{2}y+\dfrac{1}{16}\)

\(=y^2-2.y.\dfrac{1}{4}+\left(\dfrac{1}{4}\right)^2\)

\(=\left(y-\dfrac{1}{4}\right)^2\)

Với \(y=100,25\), ta được:

\(A=\left(100,25-\dfrac{1}{4}\right)^2\)

\(=\left(\dfrac{401}{4}-\dfrac{1}{4}\right)^2\)

\(=\left(\dfrac{400}{4}\right)^2=100^2=10000\)

\(------\)

\(b,B=4x^2-9y^2-6y-1\)

\(=\left(2x\right)^2-\left[\left(3y\right)^2+2.3y.1+1\right]\)

\(=\left(2x\right)^2-\left(3y+1\right)^2\)

\(=\left(2x-3y-1\right)\left(2x+3y+1\right)\)

Với \(x=23;y=1\), ta được:

\(B=\left(2.23-3.1-1\right)\left(2.23+3.1+1\right)\)

\(=\left(46-4\right)\left(46+4\right)\)

\(=42.50=2100\)