Cho 3 điểm A,B,C không thẳng hàng và điểm M thỏa mãn:\(\overrightarrow{MN}=x\overrightarrow{.MB}+y.\overrightarrow{MC}\) .Tính giá trị biểu thức P= x+y
Cho ba điểm A ; B và điểm C không thẳng hàng , và điểm M thỏa mãn đẳng thức vectơ sau :\(\overrightarrow{MA}=x.\overrightarrow{MB}+y.\overrightarrow{MC}\) .
Tính giá trị của: \(P=x+y\)
Câu 1: Cho 3 điểm A, B, C không thẳng hàng và điểm M thỏa mãn đẳng thức vecto \(\overrightarrow{MA}\)=x\(\overrightarrow{MB}\)+y\(\overrightarrow{MC}\)
Tính giá trị biểu thức P=x+y
A. P=0
B. P=2
C. P=-2
D. P=3
Câu 2: Cho hình chữ nhật ABCD và số thực k>0. Tập hợp các điểm M thỏa mãn đẳng thức \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}\right|\)=k là
A. một đoạn thẳng
B. một đường thẳng
C. một đường tròn
D. một điểm
1.Cho 2 điểm A(-2;1) và B (2;4). Tìm điểm M nằm trên trục Ox thỏa mãn AM +MB đạt giá trị nhỏ nhất .
2. Cho tam giác ABC . Tập hợp các điểm M thỏa mãn \(\overrightarrow{MA}\cdot\left(\overrightarrow{MB}+\overrightarrow{MC}\right)=0\)
Help me
1.
Lấy điểm A' đối xứng với A qua Ox \(\Rightarrow A\left(-2;-1\right)\)
M có tọa độ \(M\left(x;0\right)\)
Ta có \(AM+MB=A'M+MB\ge AB=\sqrt{4^2+5^2}=\sqrt{41}\)
\(min=41\Leftrightarrow M,A',B\) thẳng hàng
\(\Leftrightarrow\overrightarrow{A'M}=k\overrightarrow{A'B}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+2=k.4\\1=k.5\end{matrix}\right.\Rightarrow x=-\dfrac{6}{5}\Rightarrow M\left(-\dfrac{6}{5};0\right)\)
2.
Gọi N là trung điểm BC
\(\overrightarrow{MA}.\left(\overrightarrow{MB}+\overrightarrow{MC}\right)=0\)
\(\Leftrightarrow2\overrightarrow{MA}.\overrightarrow{MN}=0\)
\(\Leftrightarrow2MA.MN.cosAMN=0\)
\(\Leftrightarrow\left[{}\begin{matrix}MA=0\\MN=0\\cosAMN=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}M\equiv A\\M\equiv N\\\widehat{AMN}=90^o\end{matrix}\right.\)
\(\Rightarrow M\) thuộc đường tròn đường kính AN
Trong không gian cho ba điểm A B C , , cố định không thẳng hàng, tìm tập hợp điểm M sao cho \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|2\overrightarrow{MA}-\overrightarrow{MB}-\overrightarrow{MC}\right|\)
Gọi D là trung điểm BC và G là trọng tâm tam giác ABC
Theo tính chất trọng tâm: \(AG=\dfrac{2}{3}AD\)
\(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|2\overrightarrow{MA}-\overrightarrow{MB}-\overrightarrow{MC}\right|\)
\(\Leftrightarrow\left|\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{MG}+\overrightarrow{GB}+\overrightarrow{MG}+\overrightarrow{GC}\right|=\left|\overrightarrow{MA}+\overrightarrow{BM}+\overrightarrow{MA}+\overrightarrow{CM}\right|\)
\(\Leftrightarrow\left|3\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right|=\left|\overrightarrow{BA}+\overrightarrow{CA}\right|\)
\(\Leftrightarrow\left|3\overrightarrow{MG}\right|=\left|-2\overrightarrow{AD}\right|\)
\(\Leftrightarrow MG=\dfrac{2}{3}AD=AG\)
\(\Rightarrow\) Tập hợp M là mặt cầu tâm G bán kính AG với G là trọng tâm tam giác ABC
Câu 1:Cho tam giác ABC có M là trung điểm BC,I là trung điểm AM.Phân tích vector AI theo vector AB và AC
Câu 2:Cho tam giác ABC và điểm m thỏa mãn \(2\overrightarrow{MA}+\overrightarrow{MB}=\overrightarrow{CA}\).Chọn khẳng định đúng:
A.M trùng A
B.M trùng B
C.M trùng C
D.M là trọng tâm tam giác ABC
Câu 3:Gọi G là trọng tâm tam giác ABC.Đặt \(\overrightarrow{GA}=\overrightarrow{a},\overrightarrow{GB}=\overrightarrow{b}\).Hãy tìm m,n để có \(\overrightarrow{BC}=\overrightarrow{ma}+\overrightarrow{mb}\)
Câu 4:Cho 3 điểm A,B,C không thẳng hàng và điểm M thỏa mãn đẳng thức vector \(\overrightarrow{MA}=x\overrightarrow{MB}+y\overrightarrow{MC}\).Tính giá trị biểu thức P=x+y
Câu 1.
I là trung điểm của AM \(\Rightarrow\overrightarrow{AI}=\frac{1}{2}\overrightarrow{AM}\)
M là trung điểm của BC \(\Rightarrow\) \(\overrightarrow{AM}=\frac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\)
\(\Rightarrow\overrightarrow{AI}=\frac{1}{4}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\)
Câu 2.
Ta có: \(2\overrightarrow{MA}+\overrightarrow{MB}=\overrightarrow{CA}\Leftrightarrow2\overrightarrow{MA}+\overrightarrow{MB}=\overrightarrow{MA}-\overrightarrow{MC}\)
\(\Leftrightarrow\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{0}\)
\(\Rightarrow\) M là trọng tâm của tam giác ABC.
\(\Rightarrow\) D đúng.
Câu 1:
Theo quy tắc TĐ ta có:
\(\overrightarrow{AM}=\frac{\overrightarrow{AB}+\overrightarrow{AC}}{2}\)
Mà \(\overrightarrow{AI}=\frac{\overrightarrow{AM}}{2}\Rightarrow\overrightarrow{AI}=\frac{\frac{\overrightarrow{AB}+\overrightarrow{AC}}{2}}{2}=\frac{\overrightarrow{AB}+\overrightarrow{AC}}{4}\)
Câu 2:
Có \(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MA}=\overrightarrow{CA}\Rightarrow\overrightarrow{MC}+\overrightarrow{MB}+\overrightarrow{MA}=0\)
Vậy M là trọng tâm tam giác ABC (D)
Câu 3 sai đề, phải là \(\overrightarrow{BC}=m.\overrightarrow{a}+n.\overrightarrow{b}\) ms đúng chứ?
Câu 4 để mai ik, dài lắm :))
Cho ΔABC. Gọi 2 điểm M, N thay đổi và thỏa mãn:
\(\overrightarrow{MN}=2\overrightarrow{MA}+\overrightarrow{MB}+3\overrightarrow{MC}\)
Chứng minh MN luôn đi qua 1 điểm cố định
Cho 3 điểm A , B , C và 3 số thực a, b , c có a+b+c # 0
a. Tìm tập hợp điểm J sao cho \(a\overrightarrow{JA}+b\overrightarrow{JB}+c\overrightarrow{JC}=\overrightarrow{0}\)
b. C/m ∀M ta có \(a\overrightarrow{MA}+b\overrightarrow{MB}+c\overrightarrow{MC}=\left(a+b+c\right)\overrightarrow{MJ}\)
c. M , N là 2 điểm thỏa mãn \(a\overrightarrow{MA}+b\overrightarrow{MB}+c\overrightarrow{MC}=\overrightarrow{MN}\) . C/m M , N thay đổi thì đường thẳng MN đi qua I điểm cố định
Trong hệ tọa độ Oxy, cho tam giác ABC có A(1;2),B(3;4),C(-5;6). Điểm M(x;y) thỏa mãn hệ thức:\(\overrightarrow{MA}-2\overrightarrow{MB}+3\overrightarrow{MC}=\overrightarrow{0}\) . Tính \(S=x+y\)
Trong mặt phẳng tọa độ $O x y$, cho các điểm $A(-1 ; 3), B(2 ; 6), C(5 ; 0)$ và đường thẳng $\Delta: 3 x-y+1=0$. Tìm $M(a ; b)$ nằm trên $\Delta$ thì biểu thức $|\overrightarrow{M A}+\overrightarrow{M B}+\overrightarrow{MC}|+|\overrightarrow{M A}+2 \overrightarrow{M B}|$ có giá trị nhỏ nhất.
Gọi G là trọng tâm tam giác ABC. Ta có:
\(\left\{{}\begin{matrix}x_G=\dfrac{x_A+x_B+x_C}{3}=2\\y_G=\dfrac{y_A+y_B+y_C}{3}=3\end{matrix}\right.\) \(\Rightarrow G\left(2;3\right)\)
Do M nằm trên \(\Delta:3x-y+1=0\) nên \(M\left(m;3m+1\right)\). Ta có \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|3\overrightarrow{MG} \right|\) \(=3MG\)
Gọi I là tâm tỉ cự của 2 điểm A, B ứng với bộ số \(\left(1;2\right)\) \(\Rightarrow\overrightarrow{IA}+2\overrightarrow{IB}=\overrightarrow{0}\). Điều này có nghĩa \(\overrightarrow{IB}=\dfrac{1}{3}\overrightarrow{AB}\). Mà \(\overrightarrow{AB}=\left(3;3\right)\) nên \(\overrightarrow{IB}=\left(1;1\right)\) \(\Rightarrow I\left(1;5\right)\)
Với điểm M, ta có \(\left|\overrightarrow{MA}+2\overrightarrow{MB}\right|=\left|\left(\overrightarrow{MI}+\overrightarrow{IA}\right)+2\left(\overrightarrow{MI}+\overrightarrow{IB}\right)\right|\) \(=\left|3\overrightarrow{MI}\right|=3MI\) (do \(\overrightarrow{IA}+2\overrightarrow{IB}=\overrightarrow{0}\))
Từ đó \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|+\left|\overrightarrow{MA}+2\overrightarrow{MB}\right|\)
\(=3\left(MG+MI\right)\). Ta sẽ tìm GTNN của \(MG+MI\)
Ta thấy \(MG+MI\ge IG\). Ta lại có \(\left(3.2-3+1\right)\left(3.1-5+1\right)< 0\) nên I và G nằm khác phía so với đường thẳng \(\Delta:3x-y+1=0\). Do đó, \(MG+MI=IG\Leftrightarrow\) M nằm trên IG.
Phương trình đường thẳng IG: \(\dfrac{y-3}{x-2}=\dfrac{5-3}{1-2}=-2\) \(\Leftrightarrow y-3=4-2x\) \(\Leftrightarrow2x+y-7=0\).
M thuộc IG \(\Leftrightarrow2m+\left(3m+1\right)-7=0\) \(\Leftrightarrow m=\dfrac{6}{5}\) \(\Rightarrow M\left(\dfrac{6}{5};\dfrac{23}{5}\right)\)
Vậy điểm \(M\left(\dfrac{6}{5};\dfrac{23}{5}\right)\) thỏa mãn ycbt.