Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Thanh Thúy
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 10 2022 lúc 22:56

a: cos B=3/5 nên sin B=4/5

=>AC/BC=4/5

=>AC=8cm

=>AB=6cm

\(HC=\dfrac{8^2}{10}=6.4\left(cm\right)\)

\(M=\left(2\cdot\dfrac{3}{5}-3\cdot\dfrac{4}{5}\right):\left(1+\dfrac{4}{5}:\dfrac{3}{5}\right)\)

\(=\dfrac{-6}{5}:\left(1+\dfrac{4}{3}\right)=\dfrac{-6}{5}:\dfrac{7}{3}=\dfrac{-6}{5}\cdot\dfrac{3}{7}=\dfrac{-18}{35}\)

b: \(AD=\dfrac{AC^2}{AH}=\dfrac{8^2}{4.8}=\dfrac{40}{3}\left(cm\right)\)

\(CD=\sqrt{\left(\dfrac{40}{3}\right)^2-8^2}=\dfrac{32}{3}\left(cm\right)\)

c: \(AE\cdot EB+AF\cdot FC\)

=HE^2+HF^2

=EF^2

=AH^2

Emngutoan
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 11 2021 lúc 23:37

a: Xét ΔAHB vuông tại H có HE là đường cao

nên \(AE\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HD là đường cao

nên \(AD\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AE\cdot AB=AD\cdot AC\)

Hùng Nguyễn
Xem chi tiết
Kiều Vũ Linh
19 tháng 10 2023 lúc 14:53

loading...   

\(tanB=\dfrac{AC}{AB}=\dfrac{5}{12}\)

⇒ AC = \(\dfrac{5}{12}\) .AB

= \(\dfrac{5}{12}.5\)

\(=\dfrac{25}{12}\) (cm)

∆ABC vuông tại A

⇒ BC² = AB² + AC² (Pytago)

\(=5^2+\left(\dfrac{25}{12}\right)^2\)

= \(\dfrac{4225}{144}\)

⇒ BC = \(\dfrac{65}{12}\) (cm)

AH.BC = AB.AC

⇒ AH = AB . AC : BC

= 5 . \(\dfrac{25}{12}:\dfrac{65}{12}\)

\(=\dfrac{25}{13}\left(cm\right)\)

M là trung điểm của AC

⇒ AM = AC : 2 = \(\dfrac{25}{12}:2\) \(=\dfrac{25}{24}\) (cm)

∆ABM vuông tại A

⇒ BM² = AB² + AM²

= \(5^2+\left(\dfrac{25}{24}\right)^2\)

= \(\dfrac{15025}{576}\)

⇒ BM = \(\dfrac{5\sqrt{601}}{24}\) (cm)

ĐỖ NV1
Xem chi tiết
Nguyễn Văn A
2 tháng 4 2023 lúc 11:02

Xét △ABC vuông tại A có:

\(\tan\widehat{B}=\dfrac{AC}{AB}=\dfrac{3}{4}\Rightarrow AC=\dfrac{3}{4}AB\)

Lại có: \(AB^2+AC^2=BC^2=10^2=100\)

\(\Rightarrow AB^2+\left(\dfrac{3}{4}AB\right)^2=100\)

\(\Rightarrow\dfrac{25}{16}AB^2=100\Rightarrow AB^2=64\Rightarrow AB=8\left(cm\right)\)

\(\Rightarrow AC=\dfrac{3}{4}AB=\dfrac{3}{4}.8=6\left(cm\right)\)

\(P_{ABC}=AB+BC+CA=6+10+8=24\left(cm\right)\)

Tiểu thư sky
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 5 2018 lúc 18:17

Áp dụng tỉ số tanB trong tam giác vuông HAB và các hệ thức lượng trong tam giác vuông, chúng ta tính được AC = 30 13 cm; BM = 601 4 cm

ninh binh Fpt
Xem chi tiết
ninh binh Fpt
Xem chi tiết
Không Tên
19 tháng 7 2018 lúc 19:48

Bài 1:

B A C H D

              \(BC=CD+BD=68+51=119\)

\(AD\)là phân giác  \(\widehat{BAC}\)\(\Rightarrow\)\(\frac{BD}{AB}=\frac{DC}{AC}\)hay     \(\frac{51}{AB}=\frac{68}{AC}\)

\(\Leftrightarrow\)\(\frac{51^2}{AB^2}=\frac{68^2}{AC^2}=\frac{51^2+68^2}{AB^2+AC^2}=\frac{25}{49}\)

suy ra:    \(\frac{51^2}{AB^2}=\frac{25}{49}\)\(\Rightarrow\)\(AB=71,4\)

ÁP dụng hệ thức lượng ta có:

           \(AB^2=BH.BC\)

\(\Leftrightarrow\)\(BH=\frac{AB^2}{BC}=\frac{71,4^2}{119}=42,84\)

\(\Rightarrow\)\(CH=BC-BH=119-42,84=76,16\)

Không Tên
19 tháng 7 2018 lúc 19:55

Bài 2:

B A C H

Áp dụng Pytago ta có:

     \(AH^2+BH^2=AB^2\)

\(\Leftrightarrow\)\(BH^2=AB^2-AH^2\)

\(\Leftrightarrow\)\(BH^2=7,5^2-6^2=20,25\)

\(\Leftrightarrow\)\(BH=4,5\)

Áp dụng hệ thức lượng ta có:

       \(AB^2=BH.BC\)

\(\Rightarrow\)\(BC=\frac{AB^2}{BH}=\frac{7,5^2}{4,5}=12,5\)

       \(AB.AC=BC.AH\)

\(\Rightarrow\)\(AC=\frac{BC.AH}{AB}=\frac{12,5.6}{7,5}=10\)

b)   \(cosB=\frac{AC}{BC}=\frac{10}{12,5}=0.8\)

      \(cosC=\frac{AB}{BC}=\frac{7,5}{12,5}=0,6\)

Yukio-san
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 10 2021 lúc 23:32

b: Xét ΔAHB vuông tại H có HM là đường cao ứng với cạnh huyền AB

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao ứng với cạnh huyền AC

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)