Cho tam giác ABC vuông tại A đường cao AH cho cos ABC=3/5 và BC=10
Tính M=2cosB -3sinB/1+tanB
Cho tam giác ABC vuông tại A, đường cao AH; cos B =3/5 và BC =10cm
a)Tính độ dài của AC, HC va tính giá trị của biểu thức M=(2cosB-3sinB)/1+tanB
b)Từ C kẻ đường thẳng song song với AB cất AH tại D.Tính CD và diện tích tứ giác ABCD
c)Từ H kẻ HE vuông góc với AB ,HF vuông goc với AC(E thuộc AB,F thuộc AC).Chứng minh AE.EB+À.FC=AH2
a: cos B=3/5 nên sin B=4/5
=>AC/BC=4/5
=>AC=8cm
=>AB=6cm
\(HC=\dfrac{8^2}{10}=6.4\left(cm\right)\)
\(M=\left(2\cdot\dfrac{3}{5}-3\cdot\dfrac{4}{5}\right):\left(1+\dfrac{4}{5}:\dfrac{3}{5}\right)\)
\(=\dfrac{-6}{5}:\left(1+\dfrac{4}{3}\right)=\dfrac{-6}{5}:\dfrac{7}{3}=\dfrac{-6}{5}\cdot\dfrac{3}{7}=\dfrac{-18}{35}\)
b: \(AD=\dfrac{AC^2}{AH}=\dfrac{8^2}{4.8}=\dfrac{40}{3}\left(cm\right)\)
\(CD=\sqrt{\left(\dfrac{40}{3}\right)^2-8^2}=\dfrac{32}{3}\left(cm\right)\)
c: \(AE\cdot EB+AF\cdot FC\)
=HE^2+HF^2
=EF^2
=AH^2
Bài 5 : Cho tam giác ABC vuông tại A có đường cao AH , kẻ HE vuông góc AB tại E và HD vuông góc AC tại D. Chứng minh
a) AE . AB = AD.AC
b) AH.(tanB + tanC ) = BC
a: Xét ΔAHB vuông tại H có HE là đường cao
nên \(AE\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HD là đường cao
nên \(AD\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AE\cdot AB=AD\cdot AC\)
Cho tam giác ABC vuông góc tại A, AB=5cm, tanB=5/12 hãy tính độ dài đường cao AH và trung tuyến BM của tam giác ABC
\(tanB=\dfrac{AC}{AB}=\dfrac{5}{12}\)
⇒ AC = \(\dfrac{5}{12}\) .AB
= \(\dfrac{5}{12}.5\)
\(=\dfrac{25}{12}\) (cm)
∆ABC vuông tại A
⇒ BC² = AB² + AC² (Pytago)
\(=5^2+\left(\dfrac{25}{12}\right)^2\)
= \(\dfrac{4225}{144}\)
⇒ BC = \(\dfrac{65}{12}\) (cm)
AH.BC = AB.AC
⇒ AH = AB . AC : BC
= 5 . \(\dfrac{25}{12}:\dfrac{65}{12}\)
\(=\dfrac{25}{13}\left(cm\right)\)
M là trung điểm của AC
⇒ AM = AC : 2 = \(\dfrac{25}{12}:2\) \(=\dfrac{25}{24}\) (cm)
∆ABM vuông tại A
⇒ BM² = AB² + AM²
= \(5^2+\left(\dfrac{25}{24}\right)^2\)
= \(\dfrac{15025}{576}\)
⇒ BM = \(\dfrac{5\sqrt{601}}{24}\) (cm)
Cho tam giác ABC vuông tại A đường cai AH,H thuộc cạnh BC,BC=10cm,tanB=\(\dfrac{3}{4}\) Tính chu vi tam giác ABC
Xét △ABC vuông tại A có:
\(\tan\widehat{B}=\dfrac{AC}{AB}=\dfrac{3}{4}\Rightarrow AC=\dfrac{3}{4}AB\)
Lại có: \(AB^2+AC^2=BC^2=10^2=100\)
\(\Rightarrow AB^2+\left(\dfrac{3}{4}AB\right)^2=100\)
\(\Rightarrow\dfrac{25}{16}AB^2=100\Rightarrow AB^2=64\Rightarrow AB=8\left(cm\right)\)
\(\Rightarrow AC=\dfrac{3}{4}AB=\dfrac{3}{4}.8=6\left(cm\right)\)
\(P_{ABC}=AB+BC+CA=6+10+8=24\left(cm\right)\)
Bài 1: Cho tam giác ABC vuông tại A, tanB=3\4, AB=4cm. Giải tam giác?
Bài 2 : Cho tam giác ABC cân tại A, góc BAC=42, AB=AC=7cm,
a Đường cao AH=?
b BC=?
c Đường cao CK=?
Bài 3: Cho tam giác ABC cân tại A, AB=AC=8,5cm, BC=8cm.
a Tính các góc của tam giác ABC?
b Diện tích của tam giác ABC=?
giải từng bước...
Cho tam giác ABC vuông tại A, AB = 6cm, tanB = 5 12 . Hãy tính độ dài đường cao AH và trung tuyến BM của tam giác ABC
Áp dụng tỉ số tanB trong tam giác vuông HAB và các hệ thức lượng trong tam giác vuông, chúng ta tính được AC = 30 13 cm; BM = 601 4 cm
1. Cho tam giác ABC vuông tại A, đường cao AH, biết AB=4cm,AC=9cm. Tính sin B, sin C
2.Cho tam giác ABC vuông tại A, Cos B= an pha, Cos = 4/5. Tính sin, tan,cos
3. Cho tam giác ABC vuông tại A, đường cao AH, biết AB=6cm, BC= 10cm
a. Tính AC,AH. Tỉ số đồng giác góc B,C
b. Gọi E,F lần lượt là hình chiếu H lên AB,AC. CM :AE.AD=AF.AC
c. Tính S tứ giác AEHF
Bài 1. Chi tam giác ABC vuông tại A phân giác AD, đường cao AH biết CD= 68cm, BD=51cm. Tính BH,HC
Bài 2 . Cho tam giác ABC vuông tại A đường cao AH biết AB=7,5cm, AH=6cm.
a, Tính AC,BC
b, Tính Cos B, Cos C
Bài 1:
\(BC=CD+BD=68+51=119\)
\(AD\)là phân giác \(\widehat{BAC}\)\(\Rightarrow\)\(\frac{BD}{AB}=\frac{DC}{AC}\)hay \(\frac{51}{AB}=\frac{68}{AC}\)
\(\Leftrightarrow\)\(\frac{51^2}{AB^2}=\frac{68^2}{AC^2}=\frac{51^2+68^2}{AB^2+AC^2}=\frac{25}{49}\)
suy ra: \(\frac{51^2}{AB^2}=\frac{25}{49}\)\(\Rightarrow\)\(AB=71,4\)
ÁP dụng hệ thức lượng ta có:
\(AB^2=BH.BC\)
\(\Leftrightarrow\)\(BH=\frac{AB^2}{BC}=\frac{71,4^2}{119}=42,84\)
\(\Rightarrow\)\(CH=BC-BH=119-42,84=76,16\)
Bài 2:
Áp dụng Pytago ta có:
\(AH^2+BH^2=AB^2\)
\(\Leftrightarrow\)\(BH^2=AB^2-AH^2\)
\(\Leftrightarrow\)\(BH^2=7,5^2-6^2=20,25\)
\(\Leftrightarrow\)\(BH=4,5\)
Áp dụng hệ thức lượng ta có:
\(AB^2=BH.BC\)
\(\Rightarrow\)\(BC=\frac{AB^2}{BH}=\frac{7,5^2}{4,5}=12,5\)
\(AB.AC=BC.AH\)
\(\Rightarrow\)\(AC=\frac{BC.AH}{AB}=\frac{12,5.6}{7,5}=10\)
b) \(cosB=\frac{AC}{BC}=\frac{10}{12,5}=0.8\)
\(cosC=\frac{AB}{BC}=\frac{7,5}{12,5}=0,6\)
Cho tam giác ABC vuông tại A có đường cao AH. Gọi M và N lần lượt là hình chiếu của H lên AB,AC.
a) Biết rằng AB=12 cm, BC=20cm. Tính CH và AH ?
b) Chứng minh: AM.AB=AN.AC
c) Chứng minh tanB + tanC = BC/AH
b: Xét ΔAHB vuông tại H có HM là đường cao ứng với cạnh huyền AB
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HN là đường cao ứng với cạnh huyền AC
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)