Tính các góc của hình bình hành ABCD có AC vuông góc AD và AD=1/2CD
Hình bình hành ABCD có AC vuông góc với AD và AD=1/2 DC. Tính các góc của hình bình hành ABCD
Xét Δ vuông ADC ta có :
\(AD=\dfrac{CD}{2}\)
mà AD là cạnh góc vuông, CD là cạnh huyền
⇒ Δ ADC là tam giác nửa đều
\(\Rightarrow\left\{{}\begin{matrix}\widehat{ADC}=60^O\\\widehat{DCA}=30^O\end{matrix}\right.\)
\(\Rightarrow\widehat{ADC}=\widehat{ABC}=60^O\) (hai góc đối hình bình hành) (1)
Ta lại có : \(\widehat{BAC}=\widehat{DCA}\) (so le trong)
mà \(\widehat{DCA}=30^O\)
\(\Rightarrow\widehat{BAC}=30^2\)
mà \(\widehat{DAB}=\widehat{DAC}+\widehat{BAC}\)
\(\Rightarrow\widehat{DAB}=90^o+30^o=120^o\)
\(\Rightarrow\widehat{BCD}=\widehat{DAB}=120^o\) (hai góc đối hình bình hành) (2)
(1), (2)⇒ điều phải tính toán theo đề
cho hình bình hành ABCD có góc D= 65 độ, AB= 8cm Và AC vuông góc AD. Vẽ AH vuông góc CD
a) Tính AD
b) C/m AC.HD=BC.HA
a: AB=DC=8cm
Xét ΔADC vuông tại A có cosD=AD/DC
=>AD=3,38(cm)
b: Xét ΔCAB vuông tại C và ΔHAD vuông tại H có
góc CAB=góc HAD(=góc ACD)
=>ΔCAB đồng dạng với ΔHAD
=>CA/HA=CB/HD
=>CA*HD=CB*HA
Cho hình bình hành ABCD có AC vuông góc với AD. Qua A kẻ đường thẳng vuông góc với CD tại H và cắt BC kéo dài tại K.
a, Chứng minh rằng: CB.CK = CH.CD
b, Chứng minh rằng AH.AK + DH.DC = BC.BK
c, Biết AD = 5cm, AB = 13cm. Tính độ lớn các góc (làm tròn đến phút) và diện tích tứ giác ABCH (làm tròn đến chữ số thập phân thứ 2)
a: Ta có: AD//BC
AC\(\perp\)AD
Do đó: AC\(\perp\)BC
Xét ΔBAK vuông tại A có AC là đường cao ứng với cạnh huyền BK, ta được:
\(CB\cdot CK=AC^2\left(1\right)\)
Xét ΔADC vuông tại A có AH là đường cao ứng với cạnh huyền CD,ta được:
\(CH\cdot CD=AC^2\left(2\right)\)
Từ (1) và(2) suy ra \(CB\cdot CK=CH\cdot CD\)
cho hình bình hành ABCD có AC > BD . Vẽ CE vuông góc với AB tại E và CF vuông góc với AD tại F . Biết đường chéo AC = a , hãy tính AB.AE + AD.AF theo a .
cho hình thang ABCD có góc A =góc D=90 và AB=1/2CD . Vẽ DH vuông góc AC tại H . gọi M,N lần lượt là trung điểm của HD và HC
a,chứng minh ABNM là hình bình hành
b,tính số đo góc BND
Cho hình bình hành ABCD có góc A nhọn. Kẻ BH,CM,CN,DI lần lượt vuông góc với AC,AB,AD và AC, AH=CI, DIBH là hình bình hành, AD.CN=AB.CMChứng minh: AD.AN+AB.AM=AC^2
Xét ΔAHB vuông tại H và ΔAMC vuông tại M có
góc HAB chung
=>ΔAHB đồng dạng với ΔAMC
=>AH/AM=AB/AC
=>AB*AM=AH*AC
Xét ΔHCB vuông tại H và ΔNAC vuông tại N có
góc HCB=góc NAC
=>ΔHCB đồng dạng với ΔNAC
=>CB/AC=HC/NA
=>CB*NA=HC*AC=AD*AN
=>AD*AN+AB*AM=AC^2
Cho hình bình hành ABCD (AC > BD). Vẽ CE vuông góc với AB và CF vuông góc với AD. Chứng minh AB.AE + AD.AF = AC^2
Cho hình bình hành ABCD có diện tích là 36cm2. Tính chu vi của hình bình hành đó biết chiều cao hạ từ đỉnh A vuông góc với cạnh DC là 3cm và bằng 1/2 chiều cao hạ từ đỉnh D vuông góc với cạnh AD?
cho hình bình hành abcd có ad vuông góc với ac. Gọi M,N lần lượt là trung điểm của ac,bd . Chứng minh:a, Tứ giác adnm là hình bình hành
M,N là trung điểm của AC và BD thì M và N trùng nhau rồi bạn
Cho AC là đường chéo lớn của hình bình hành ABCD. Từ C kẻ CE vuông góc với AB, kẻ CF vuông góc với AD (E,F thuộc AB và AD). Chứng minh rằng: AB*AE+AD*AF=AC2