M,N là trung điểm của AC và BD thì M và N trùng nhau rồi bạn
M,N là trung điểm của AC và BD thì M và N trùng nhau rồi bạn
Bài 1: Cho tam giác ABC nhọn ( AB < BC ) , đường cao AH. Gọi I , K , M , N theo thứ tự là trung điểm của AB, AC, HC, HB. Chứng minh:
a) Tứ giác BCKI là hình thang ?
b) IM=NK
Bài 2 : Cho hình bình hành ABCD , có AD vuông góc với AC. Gọi M, N lần lượt là trung điểm của AB, CD. Chứng minh:
a) Tứ giác ADNM là hình bình hành ?
b) Tứ giác AMND là hình thoi ?
Bài 3 : Cho hình chữ nhật ABCD , P và Q lần lượt là trung điểm của BC và AD. Gọi M là giao điểm của AP và BQ , N là giao điểm của CQ và DP. Chứng minh:
a) Tứ giác APCQ , BPDQ là hình bình hành
b) Tứ giác ABPQ , CDQP là hình chữ nhật
c) Tứ giác MPNQ là hình thoi
d) Tứ giác AMND , BCNM là hình thang cân
Cho hình bình hành ABCD, M là trung điểm AB, N là trung điểm CD.
a. CM tứ giác AMND là hình bình hành.
b. CM Tứ giác AMCN là hình bình hành.
c. CM AC,BD, MN đồng quy.
Bài 2 : Cho hình thang cân ABCD ( AB // CD ). Gọi M,N,P ,Q lần lượt là trung điểm Ab,CD,AD,CA. Biết AC vuông góc với BD.
a. CM tứ giác MNPQ là hình bình hành.
b. CM tứ giác MNPQ là hình thoi.
Bài 1
Cho hình bình hành ABCD có AD vuông góc với AC. Gọi M,N lần lượt là trung điểm của AB, CD. CHứng minh:hình
a) Tứ giác ADNM là hình bình hành
b) Tứ giác AMCN là hình thoi
Bài 2
Cho tam giác ABC vuông tại A ( AC = 2AB), trên tia đối của tia BA lấy điểm D sao cho BD = BA. Từ D và C lần lượt vẽ các đường thẳng song song với AC và AB, chúng cắt nhau tại E.
a) C/m tứ giác ACED là hình vuông
b) Gọi F là trung điểm của ED. C/m \(\Delta ABC=\Delta DFA\)
c) Gọi M là giao điểm của AF và BC. C/m BC \(⊥\)AF
d) C/m EM = AC
Bài 1: Cho hình bình hành ABCD. Vẽ tia Bx vuông góc với AC, Dy vuông góc với AC. Đường thẳng qua A vuông góc với BD cắt Bx tại P, cắt Dy tại Q. Đường thẳng qua C vuông góc với BD cắt Bx tại N, cắt Dy tại M. Đường thẳng NQ cắt AD ở E, BC ở F. CMR: MNPQ, MEPF là hình bình hành.
Bài 2: Cho tứ giác ABCD có AD = BC, góc C và góc D tù. Gọi M, N, P, Q lần lượt là trung điểm AB, AC, CD, BD. MNPQ là hình gì? Chứng minh.
5. cho hình bình hành ABCD, có M là trung điểm của AD, N là trung điểm của BC. Chứng minh rằng BM=DN
6. Cho hình bình hành ABCD, gọi E,F lần lượt là trung điểm của AB,CD.
a) Chứng minh rằng: Tứ giác DEBF là hình bình hành
b) DE cắt AC tại G, BF cắt AC tại H. Chứng minh: DE = EF = FB
7. Cho hình bình hành ABCD, kẻ AM vuông góc với BD tại H, kẻ CN vuông góc với BD tại k.
a) chứng minh rằng: tứ giác AMCN là hình bình hành
b) Gọi I là trung điểm của MN. Chứng minh rằng: ba điểm A,I,C thẳng hàng
cho tứ giác abcd gọi m,n,p lần lượt là trung điểm bc,bd,ad,ac chứng minh mnpq là hình bình hành
cho hcn ABCD, BH vuông góc với AC. Gọi M,N,I lần lượt là trung điểm của BH, CH, AD. chứng minh
a) tứ giác AMNI là hình bình hành
b) MN vuông góc với IN
cho ABCD là hình chữ nhật, DE vuống với Ac, BF vuông góc với AC. Chứng minh:a) DEBF là hình bình hành b) cho CG vuông góc với BD, chứng minh EG song song với DC và DEGC là hình thang cân c) gọi M,N lần lượt là trung điểm của EC và AB. Tính góc DMN
Cho hình bình hành ABCD. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA
a) Chứng minh tứ giác MNPQ là hình bình hành
b) Hình bình hành ABCD cần thêm điều kiện gì để MNPQ là hình chữ nhật, hình thoi, hình vuông?
c) Gọi O là giao điểm của AC,BD.Chứng minh: M,O,P thẳng hàng
d) Chứng minh : AC, BD, QN đồng qui