Cho 2 tập hợp
A = { \(3k+1\)l \(k\in Z\) }
B = { \(6m+4\) l \(m\in Z\) }
Chứng tỏ rằng \(B\subset A\)
cho A={3k+2|k\(\in\)Z}; B={6m+2|m\(\in\)Z}
a) chứng minh rằng 2\(\in\)A, 7\(\notin\)B. số 18 có thuộc tập hợp A hay không?
b) chứng minh rằng \(B\subset A\).
a) - Để chứng minh rằng 2 ∈ A, ta cần tìm một số nguyên k sao cho 3k + 2 = 2. Thấy ngay k = 0 là thỏa mãn, vì 3*0 + 2 = 2. Vậy 2 ∈ A.- Để chứng minh rằng 7 ∉ B, ta cần chứng minh rằng không tồn tại số nguyên m để 6m + 2 = 7. Giả sử tồn tại m, ta có 6m = 5, nhưng đây là một phương trình vô lý vì 6 không chia hết cho 5. Vậy 7 ∉ B.- Để kiểm tra xem số 18 có thuộc tập hợp A hay không, ta cần tìm một số nguyên k sao cho 3k + 2 = 18. Giải phương trình này, ta có 3k = 16, vì 3 không chia hết cho 16 nên không tồn tại số nguyên k thỏa mãn. Vậy số 18 không thuộc
Cho hai tập hợp
A = {3k + 1| k ∈ Z}
B = {6m + 4| m ∈ Z}
Chứng tỏ rằng B ⊂ A
Giả sử x ∈ B, x = 6m + 4, m ∈ Z. Khi đó ta có thể viết x = 3(2m + 1) + 1
Đặt k = 2m + 1 thì k ∈ Z vào ta có x = 3k + 1, suy ra x ∈ A
Như vậy x ∈ B ⇒ x ∈ A
hay B ⊂ A
Cho hai tập hợp :
\(A=\) {\(3k+1\) | \(k\in Z\)}
\(B=\) {\(6m+4\)| \(m\in Z\)}
Chứng tỏ rằng \(B\subset A\)?
Ta có: x = 3k+1 , k Є Z => x ∈ A
Gọi x' = 6m + 4 Є Z , ∀ x ∈ B
Ta có:
x' = 6m + 4 = 6m + 3 + 1 = 3(2m + 1) + 1
Do (2m + 1) ∈ Z nên đặt (2m + 1) = k' ∈ Z với k' là số lẻ
\(\Rightarrow\)x' = 3k' + 1 ∈ Z
\(\Rightarrow\)x' \(\in\) A
\(\Rightarrow\)B \(\in\) A
1. Cho A = { 2 + 3k | k \(\in\) Z } , B = { 2 + 6k | k \(\in\) Z } , C = { -1 + 3k | k \(\in\) Z }
a . chứng minh rằng 2 \(\in\) A , - 7 \(\in\) C . số 16 có thuộc tập hợp A không ?
b.Chứng minh rằng B \(\subset\) A , A = C
Cho các tập hợp A={3k+1|k thuộc z} B={6m+4|m thuộc z} khi đó A và B có mối liên hệ gì
giả sử \(\text{x ∈ B, x = 6m + 4, m ∈ Z}\) . Khi đó ta có thể viết \(\text{ x = 3(2m + 1) + 1}\)
Đặt \(\text{k = 2m + 1}\) thì thay \(\text{ k ∈ Z}\) vào ta có \(\text{x = 3k + 1}\Rightarrow\text{x ∈ A}\)
Như vậy \(\text{x ∈ B ⇒ x ∈ A}\)
Hay \(\text{B ⊂ A}\)
Cho tập A = { x \(\in Z\) | x = 15k; k \(\in Z\) } và B = { \(x\in Z\) | x = 5m; m \(\in Z\) }. Khẳng định nào sau đây là đúng?
A. B \(\subset A\) B. A ko là tập con của B C. A = B D. A là tập con của B
cho A={n \(\in\) Z,n=2k,k\(\in\) Z}
B là tập hợp các số nguyên có chữ số tận cùng là 0,2,4,6,8
C={n \(\in\) Z,n=2k-2,k\(\in\) Z}
D={n \(\in\) Z,n=3k-1,k\(\in\) Z}
cm A=B,A=C,A\(\ne\) D
Vì B là tập các số nguyên có tận cùng là 0;2;4;6;8
nên B là tập các số chẵn
=>A=B
Vì 2k-2=2(k-1) chia hết cho 2
nên C là tập các số chẵn
=>A=C
Cho 2 tập hợp
I={ 3k+1 / k thuộc Z }
J={ 6m + 4 / m thuộc Z }
chứng minh J con I
Viết mỗi tập hợp sau bằng cách liệt kê các phần tử:
a) A = { \(x\in Z\) | \(2x^3-3x^2-5x=0\) }
b) B = { \(x\in Z\) | \(x< \left|3\right|\) }
c) C = { x = 3k; x, \(k\in Z\); -4<x<12 }
a) \(2x^3-3x^2-5x=0\)
\(x\left(x+1\right)\left(2x-5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\left(L\right)\\x=-1\left(TM\right)\\x=\dfrac{5}{2}\left(L\right)\end{matrix}\right.\)
\(A=\left\{-1\right\}\)
b) \(x< \left|3\right|\)\(\Leftrightarrow-3< x< 3\)
\(B=\left\{-2;-1;1;2\right\}\)
c) \(C=\left\{-3;3;6;9\right\}\)
a) \(A=\left\{x\in Z|2x^3-3x^2-5x=0\right\}\)
\(2x^3-3x^2-5x=0\)
\(\Leftrightarrow x\left(2x^2-3x-5\right)=0\)
\(\Leftrightarrow x\left(x+1\right)\left(2x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=\dfrac{5}{2}\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow A=\left\{0;-1\right\}\)
b) \(B=\left\{-2;-1;0;1;2\right\}\)
c) \(C=\left\{-3;3;6;9\right\}\)