Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trường Nguyễn Công

cho A={3k+2|k\(\in\)Z}; B={6m+2|m\(\in\)Z}
a) chứng minh rằng 2\(\in\)A, 7\(\notin\)B. số 18 có thuộc tập hợp A hay không?
b) chứng minh rằng \(B\subset A\).

meme
25 tháng 8 2023 lúc 9:39

a) - Để chứng minh rằng 2 ∈ A, ta cần tìm một số nguyên k sao cho 3k + 2 = 2. Thấy ngay k = 0 là thỏa mãn, vì 3*0 + 2 = 2. Vậy 2 ∈ A.- Để chứng minh rằng 7 ∉ B, ta cần chứng minh rằng không tồn tại số nguyên m để 6m + 2 = 7. Giả sử tồn tại m, ta có 6m = 5, nhưng đây là một phương trình vô lý vì 6 không chia hết cho 5. Vậy 7 ∉ B.- Để kiểm tra xem số 18 có thuộc tập hợp A hay không, ta cần tìm một số nguyên k sao cho 3k + 2 = 18. Giải phương trình này, ta có 3k = 16, vì 3 không chia hết cho 16 nên không tồn tại số nguyên k thỏa mãn. Vậy số 18 không thuộc


Các câu hỏi tương tự
emily
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Nguyễn Minh Quân
Xem chi tiết
Nguyễn Minh Quân
Xem chi tiết
hacker144
Xem chi tiết
Vô danh
Xem chi tiết
Hi Mn
Xem chi tiết
Thanh Thảo
Xem chi tiết
Nguyễn Minh Quân
Xem chi tiết