Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
bou99
Xem chi tiết
Nguyễn Huy Tú
25 tháng 7 2021 lúc 15:02

Bài 2 : 

\(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)

<=> a^2 + b^2 + c^2 + 2ab + 2bc + 2ca = 3ab + 3bc + 3ca 

<=> a^2 + b^2 + c^2 = ab + bc + ca 

<=> 2a^2 + 2b^2 + 2c^2 = 2ab + 2bc + 2ca 

<=> ( a - b )^2 + ( b - c )^2 + ( c - a )^2 = 0 

<=> a = b = c 

Nguyễn Huy Tú
25 tháng 7 2021 lúc 15:07

Bài 1 : 

a^2 + b^2 + 9 = ab + 3a + 3b 

<=> 2a^2 + 2b^2 + 18 = 2ab + 6a + 6b 

<=> a^2 - 2ab + b^2 + a^2 - 6a + 9 + b^2 - 6a + 9 = 0 

<=> ( a - b)^2 + ( a - 3)^2 + ( b - 3)^2 = 0 

Dấu ''='' xảy ra khi a = b = 3 

Nguyễn Việt Lâm
25 tháng 7 2021 lúc 15:14

1.

\(\Leftrightarrow2a^2+2b^2+18=2ab+6a+6b\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-6a+9\right)+\left(b^2-6b+9\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-3\right)^2+\left(b-3\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\a-3=0\\b-3=0\end{matrix}\right.\) \(\Leftrightarrow a=b=3\)

2.

\(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=3ab+3bc+3ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\) \(\Leftrightarrow a=b=c\)

Thien
Xem chi tiết
Thơ Trần
Xem chi tiết
Yeutoanhoc
5 tháng 6 2021 lúc 22:42

Xin lỗi nhé!

Áp dụng BĐT ta có:
`a^2+9>=6a`
`b^2+25>=10b`
`c^2+4>=4a`
`=>a^2+b^2+c^2+38>=6a+10b+4c`
`<=>76>=6a+10b+4c(1)`
Ta có:
`6a+10b+4c`
`=6(a+b)+4(b+c)`
`=48+4(b+c)>=48+4.7=76(2)`
`(1)(2)=>6a+10b+4c=76`
`<=>a=3,b=5,c=2`

Nguyễn Việt Lâm
5 tháng 6 2021 lúc 22:43

Do \(a^2+b^2+c^2=38\Rightarrow\left|b\right|\le\sqrt{38}< 7\)

\(\Rightarrow c\ge7-b>0\)

\(\Rightarrow c^2\ge\left(7-b\right)^2\)

Do đó:

\(38=\left(8-b\right)^2+b^2+c^2\ge\left(8-b\right)^2+b^2+\left(7-b\right)^2\)

\(\Leftrightarrow5\left(b-5\right)^2\le0\)

\(\Leftrightarrow b=5\Rightarrow a=3;c=2\)

Yeutoanhoc
5 tháng 6 2021 lúc 22:41

Áp dụng BĐT ta có:
`a^2+9>=6a`
`b^2+25>=10b`
`c^2+4>=4a
`=>a^2+b^2+c^2+38>=6a+10b+4c`
`<=>76>=6a+10b+4c(1)`
Ta có:
`6a+10b+4c`
`=6(a+b)+4(b+c)`
`=48+4(b+c)>=48+4.7=76(2)`
`(1)(2)=>6a+10b+4c=76`
`<=>a=3,b=5,c=2`

Lương Hoàng Bách
Xem chi tiết
Nguyễn Đức Trí
22 tháng 8 2023 lúc 17:11

\(\overline{abc}=100a+10b+c=a+b+c+263\)

\(\Rightarrow99a+9b=263\)

\(\Rightarrow9\left(11a+b\right)=263\)

mà \(263\) là số nguyên tố

Nên không tồn tại \(\left(a;b\right)\) thỏa đề bài.

vân vũ
Xem chi tiết
Sinh Viên NEU
22 tháng 10 2023 lúc 11:08

a)

Các số nguyên x thỏa mãn là:

\(x\in\left\{-10;-9;-8;-7;-6;-5;-4;-3;-2;-1;0;1;2;3;4;5;6;7;8\right\}\)

Tổng các số nguyên trên là:

\((8-10).19:2=-19\)

b) 

Các số nguyên x thỏa mãn là:

\(x\in\left\{-9;-8;-7;-6;-5;-4;-3;-2;-1;...;6;7;8;9;10\right\}\)

Tổng các số trên là: 

\((10-9).20:2=10\)

c) Các số nguyên x thỏa mãn là:

\(x\in\left\{-15;-14;-13;-12;-11;-10;-9;-8;-7;-6;-5;...;12;13;14;15;16\right\}\)

Tổng các số nguyên đó là: 

\((16-15).32:2=16\)

 

Uchiha Sasuke
Xem chi tiết
Kang Yumy
Xem chi tiết
PHÚC
25 tháng 3 2016 lúc 19:58

1

đúng mà mình làm rùi

Phùng Tiến Thành
29 tháng 5 2016 lúc 12:42

(1,1,1); (2,3,5)

nguyen phuong thao
3 tháng 2 2017 lúc 16:00

Tìm tất cả các bộ 3 số nguyên tố (a,b,c) sao cho: abc < ab+bc+ac

Nguyễn An
Xem chi tiết
Akai Haruma
17 tháng 8 2021 lúc 1:23

Lời giải:

Ta thấy:
$(ab+cd)(ac+bd)=ad(c^2+b^2)+bc(a^2+d^2)$

$=(ad+bc)t$

Mà: 

$2(t-ab-cd)=(a-b)^2+(c-d)^2>0$ nên $t> ab+cd$

Tương tự: $t> ac+bd$

Kết hợp $(ab+cd)(ac+bd)=(ad+bc)t$ nên:

$ab+cd> ad+bc, ac+bd> ad+bc$

Nếu $ab+cd, ac+bd$ đều thuộc $P$. Do $ad+bc$ là ước của $ab+cd$ hoặc $ac+bd$. Điều này vô lý 

Do đó ta có đpcm.

 

Nguyễn Thị Huyền Diệp
Xem chi tiết