Tìm GTNN của P = x2 + 2y2 + 2xy - 6x - 8y + 2019
Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 2xy – 6x – 8y + 2028
Lời giải:
$P=(x^2+y^2+2xy)+y^2-6x-8y+2028$
$=(x+y)^2-6(x+y)+(y^2-2y)+2028$
$=(x+y)^2-6(x+y)+9+(y^2-2y+1)+2018$
$=(x+y-3)^2+(y-1)^2+2018\geq 0+0+2018=2018$
Vậy $P_{\min}=2018$
Giá trị này đạt tại $x+y-3=y-1=0$
$\Leftrightarrow y=1; x=2$
Tìm giá trị nhỏ nhất của biểu thức : B = 2x2+2y2+z2+2xy+2xz-6x-8y-2z+13
\(B=\left(x^2+y^2+4+2xy-4x-4y\right)+\left(x^2+z^2+1+2xz-2x-2z\right)+\left(y^2-4y+4\right)+4\)
\(B=\left(x+y-2\right)^2+\left(x+z-1\right)^2+\left(y-2\right)^2+4\ge4\)
Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}x+y-2=0\\x+z-1=0\\y-2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=2\\z=1\end{matrix}\right.\)
Tìm GTNN của x2+2y2-2xy+10x-16y+20
Lời giải:
$x^2+2y^2-2xy+10x-16y+20$
$=(x^2-2xy+y^2)+y^2+10x-16y+20$
$=(x-y)^2+10(x-y)+y^2-6y+20$
$=(x-y)^2+10(x-y)+25+(y^2-6y+9)-14$
$=(x-y+5)^2+(y-3)^2-14$
$\geq -14$
Vậy biểu thức có min $=-14$
Giá trị này đạt tại $x-y+5=y-3=0$
$\Leftrightarrow (x,y)=(-2,3)$
Tìm GTNN của biểu thức F = x2– 2xy + 2y2 – 2y +2022
Ai giúp mình với
\(F=\left(x^2-2xy+y^2\right)+\left(y^2-2y+1\right)+2021\\ F=\left(x-y\right)^2+\left(y-1\right)^2+2021\ge2021\)
Dấu \("="\Leftrightarrow x=y=1\)
Vậy \(F_{min}=2021\)
\(\Rightarrow F=\left(x^2-2xy+y^2\right)+\left(y^2-2y+1\right)+2021\\ \Rightarrow F=\left(x-y\right)^2+\left(y-1\right)^2+2021\ge2021\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=y\\y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
Giúp mình câu này vs ạ Tìm gtnn của A=x2+2y2+2xy+2x-4y+2022
Tìm GTNN của :
P = x2 - 2xy + 2y2 + 2x - 10y + 1
Giúp em với ạ em cần gấp
Em cảm ơn ạ
\(P=\left(x^2-2xy+y^2\right)+2\left(x-y\right)+1+\left(y^2-8y+16\right)-16\\ P=\left(x-y\right)^2+2\left(x-y\right)+1+\left(y-4\right)^2-16\\ P=\left(x-y+1\right)^2+\left(y-4\right)^2-16\ge-16\)
\(P_{min}=-16\Leftrightarrow\left\{{}\begin{matrix}x-y=-1\\y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\)
\(P=\left(x^2+y^2+1-2xy+2x-2y\right)+\left(y^2-8y+16\right)-16\\ =\left(x-y+1\right)^2+\left(y-4\right)^2-16\\ \ge-16\)
dấu = xảy ra khi và chỉ khi y=4,x=3
Tìm GTNN:
a) B= x2 + 2y2 - 2xy - 4y + 5
b) C= 2x2 - 2xy + 5y2 +5
Giúp me zới!!!
Bài 1: Tìm giá trị nhỏ nhất:
a)A=x2-2xy+5y2+4y+51
b)B=121/-4xy2-12x+2
c)C=9/-2x2+4x-7
d)10x2+4y2-4xy+8x-4y+20
e)E=9x2+2y2+6xy-6x-8y+10
a: Ta có: \(A=x^2-2xy+5y^2+4y+51\)
\(=x^2-2xy+y^2+4y^2+4y+1+50\)
\(=\left(x-y\right)^2+\left(2y+1\right)^2+50\ge50\forall x,y\)
Dấu '=' xảy ra khi \(x=y=-\dfrac{1}{2}\)
a) \(A=x^2-2xy+5y^2+4y+51=\left(x^2-2xy+y^2\right)+\left(4y^2+4y+1\right)+50=\left(x-y\right)^2+\left(2y+1\right)^2+50\ge50\)
\(minA=50\Leftrightarrow x=y=-\dfrac{1}{2}\)
c) \(C=\dfrac{9}{-2x^2+4x-7}=\dfrac{9}{-2\left(x^2-2x+1\right)-5}=\dfrac{9}{-2\left(x-1\right)^2-5}\ge\dfrac{9}{-5}=-\dfrac{9}{5}\)
\(minC=-\dfrac{9}{5}\Leftrightarrow x=1\)
d) \(10x^2+4y^2-4xy+8x-4y+20=\left[4y^2-4y\left(x+1\right)+\left(x+1\right)^2\right]+\left(9x^2+6x+1\right)+18=\left(2y-x-1\right)^2+\left(3x+1\right)^2+18\ge18\)
\(minD=18\Leftrightarrow\) \(\left\{{}\begin{matrix}x=-\dfrac{1}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\)
e) \(E=9x^2+2y^2+6xy-6x-8y+10=\left[9x^2+6x\left(y-1\right)+\left(y-1\right)^2\right]+\left(y^2-6x+9\right)=\left(3x+y-1\right)^2+\left(y-3\right)^2\ge0\)
\(minE=0\Leftrightarrow\) \(\left\{{}\begin{matrix}x=-\dfrac{2}{3}\\y=3\end{matrix}\right.\)
a) Cho các số a, b, c thỏa mãn:a + b + c = 3/2. Chứng minh rằng: a2 + b2 + c2 ≥ 3/4.
b) Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 2xy – 6x – 8y + 2028?
Khởi động nhẹ nhàng thôi:v
\(a^2+b^2+c^2\ge\dfrac{3}{4}\)
\(\Rightarrow a^2+b^2+c^2-a-b-c\ge\dfrac{3}{4}-\dfrac{3}{2}=-\dfrac{3}{4}\)
\(\Rightarrow\left(a^2-a+\dfrac{1}{4}\right)+\left(b^2-b+\dfrac{1}{4}\right)+\left(c^2-c+\dfrac{1}{4}\right)\ge0\)
\(\Rightarrow\left(a-\dfrac{1}{2}\right)^2+\left(b-\dfrac{1}{2}\right)^2+\left(c-\dfrac{1}{2}\right)^2\ge0\) (đúng)
\("="\Leftrightarrow a=b=c=\dfrac{1}{2}\)
a) C1. Áp dụng BĐT : ( x - y)2 ≥ 0 ∀xy
Ta có : a2 + b2 ≥ 2ab ( 1)
b2 + c2 ≥ 2bc ( 2)
c2 + a2 ≥ 2ac ( 3)
Từ ( 1 ; 2 ; 3) ⇒ 2( a2 + b2 + c2) ≥ 2( ab + ab + ac)
⇔ 3( a2 + b2 + c2) ≥ ( a + b + c)2
⇔ a2 + b2 + c2 ≥ \(\dfrac{\left(a+b+c\right)^2}{3}=\dfrac{9}{4}.\dfrac{1}{3}=\dfrac{3}{4}\)
Đẳng thức xảy ra khi và chỉ khi : a = b = c = \(\dfrac{1}{2}\)
C2. Áp dụng BĐT Bunhiacopxki , ta có :
( a2 + b2 + c2)( 12 + 12 + 12) ≥ ( a + b + c)2
⇔ a2 + b2 + c2 ≥ \(\dfrac{\left(a+b+c\right)^2}{3}=\dfrac{9}{4}.\dfrac{1}{3}=\dfrac{3}{4}\)
Đẳng thức xảy ra khi và chỉ khi : a = b = c = \(\dfrac{1}{2}\)