Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đỗ Thị Ánh Nguyệt
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 4 2019 lúc 21:31

Giải trâu bò:

Gọi \(N\left(x;y\right)\Rightarrow\left(x-1\right)^2+\left(y+4\right)^2=25\)

\(\left\{{}\begin{matrix}\overrightarrow{NP}=\left(5-x;10-y\right)\\2\overrightarrow{NQ}=\left(16-2x;2-2y\right)\end{matrix}\right.\) \(\Rightarrow\overrightarrow{NP}+2\overrightarrow{NQ}=3.\left(7-x;4-y\right)\)

\(\Rightarrow A=\left|\overrightarrow{NP}+2\overrightarrow{NQ}\right|=3\sqrt{\left(x-7\right)^2+\left(y-4\right)^2}\)

\(A_{min}\) khi \(B=\left(x-7\right)^2+\left(y-4\right)^2\) đạt min

Lượng giác hóa:

Từ giả thiết \(\left(x-1\right)^2+\left(y+4\right)^2=25\Rightarrow\left(\frac{x-1}{5}\right)^2+\left(\frac{y+4}{5}\right)^2=1\)

\(\Rightarrow\) Đặt \(\left\{{}\begin{matrix}\frac{x-1}{5}=sina\\\frac{y+4}{5}=cosa\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=5sina+1\\y=5cosa-4\end{matrix}\right.\) thế vào B:

\(B=\left(5sina-6\right)^2+\left(5cosa-8\right)^2\)

\(B=25sin^2a+25cos^2a-60sina-80cosa+100\)

\(B=125-100\left(\frac{3}{5}sina+\frac{4}{5}cosa\right)=125-100.sin\left(a+\alpha\right)\)

\(\Rightarrow B_{min}=25\) khi \(sin\left(a+\alpha\right)=1\) \(\Rightarrow\left\{{}\begin{matrix}sina=\frac{3}{5}\\cosa=\frac{4}{5}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=5sina+1=4\\y=5cosa-4=0\end{matrix}\right.\) \(\Rightarrow N\left(4;0\right)\)

Sách Giáo Khoa
Xem chi tiết
Doraemon
30 tháng 3 2017 lúc 21:41

Giải bài 7 trang 28 sgk Hình học 10 | Để học tốt Toán 10

Trung Nguyễn Đình Trung
Xem chi tiết
lê duy mạnh
24 tháng 9 2019 lúc 22:19

vec tơ hả ban

Anh Khương Vũ Phương
Xem chi tiết
Lê Thành Vinh
Xem chi tiết
Ngân Vũ Thị
24 tháng 7 2019 lúc 19:05

Chương I: VÉC TƠChương I: VÉC TƠChương I: VÉC TƠ

Trà Nguyen
Xem chi tiết
Hồng Quang
23 tháng 7 2019 lúc 19:44

Dễ mà bạn :)) cái này dùng qui tắc công với chèn điểm là nuột =)

a) \(\overrightarrow{PQ}+\overrightarrow{NP}+\overrightarrow{MN}=\overrightarrow{NP}+\overrightarrow{PQ}+\overrightarrow{MN}\)

\(=\overrightarrow{NQ}+\overrightarrow{MN}=\overrightarrow{MN}+\overrightarrow{NQ}=\overrightarrow{MQ}\left(đpcm\right)\)

( quá chi tiết rồi nha bạn... )

b) Ta có: \(\overrightarrow{NP}+\overrightarrow{MN}=\overrightarrow{NQ}+\overrightarrow{QP}+\overrightarrow{MQ}+\overrightarrow{QN}\)

\(\overrightarrow{NP}+\overrightarrow{MN}=\overrightarrow{QP}+\overrightarrow{MQ}+\overrightarrow{NQ}+\overrightarrow{QN}\)

\(\Rightarrow\overrightarrow{NP}+\overrightarrow{MN}=\overrightarrow{QP}+\overrightarrow{MQ}\left(đpcm\right)\)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
24 tháng 9 2023 lúc 1:01

Do MQ và PN không song song với nhau nên \(\overrightarrow {MQ}  \ne k\overrightarrow {NP} \). Vậy loại B và D.

Ta có: \(\overrightarrow {MN} ,\overrightarrow {PQ} \)là hai vecto ngược hướng và \(\left| {\overrightarrow {MN} } \right| = 2\left| {\overrightarrow {PQ} } \right|\)

Suy ra \(\overrightarrow {MN}  =  - 2\overrightarrow {PQ} \)

Vậy chọn C.

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
24 tháng 9 2023 lúc 0:56

Vận dụng tính chất giao hoán ta có: \[\overrightarrow u  = \overrightarrow {NP}  + \overrightarrow {MN}  = \overrightarrow {MN}  + \overrightarrow {NP}  = \overrightarrow {MP} \]

Chọn C.

Sách Giáo Khoa
Xem chi tiết
Bùi Thị Vân
12 tháng 5 2017 lúc 8:54

TenAnh1 TenAnh1 A = (-4, -6.26) A = (-4, -6.26) A = (-4, -6.26) B = (11.36, -6.26) B = (11.36, -6.26) B = (11.36, -6.26)
Do \(\overrightarrow{NP}=\overrightarrow{DC}\); \(\overrightarrow{AM}=\overrightarrow{BA}\Rightarrow\overrightarrow{MA}=\overrightarrow{AB}\).
Do tứ giác ABCD là hình bình hành nên \(\overrightarrow{AB}=\overrightarrow{DC}\).
Vì vậy \(\overrightarrow{NP}=\overrightarrow{MA}\) nên tứ giác NPAM là hình bình hành.
Vì vậy \(\overrightarrow{PA}=\overrightarrow{NM}\). (1)
\(\overrightarrow{MN}=\overrightarrow{DA}\) suy ra \(\overrightarrow{NM}=\overrightarrow{AD}\) . (2)
Mặt khác \(\overrightarrow{AD}=\overrightarrow{BC}\) (do tứ giác ABCD là hình bình hành). (3)
Từ (1);(2);(3) suy ra:\(\overrightarrow{PA}=\overrightarrow{BC}\).
\(\overrightarrow{PQ}=\overrightarrow{BC}\Rightarrow\overrightarrow{PQ}=\overrightarrow{PA}\).
Vì vậy hai điểm A và Q trùng nhau nên \(\overrightarrow{AQ}=\overrightarrow{0}\).