Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tiếng anh123456
Xem chi tiết
HT.Phong (9A5)
5 tháng 11 2023 lúc 16:10

6) \(\sqrt{x^2-4x+1}=x\left(x\ge0\right)\) 

\(\Leftrightarrow x^2-4x+1=x^2\)

\(\Leftrightarrow x^2-x^2=4x-1\)

\(\Leftrightarrow4x=1\)

\(\Leftrightarrow x=\dfrac{1}{4}\left(tm\right)\) 

8) \(\sqrt{x^2-x-6}=\sqrt{x-3}\left(x\ge3\right)\) 

\(\Leftrightarrow x^2-x-6=x-3\)

\(\Leftrightarrow x^2-2x-3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=-1\left(ktm\right)\end{matrix}\right.\)

9) \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\left(x\ge1\right)\)

\(\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}+2=0\)

\(\Leftrightarrow-2\sqrt{x-1}+2=0\)

\(\Leftrightarrow-2\sqrt{x-1}=-2\)

\(\Leftrightarrow\sqrt{x-1}=1\)

\(\Leftrightarrow x-1=1\)

\(\Leftrightarrow x=1+1\)

\(\Leftrightarrow x=2\left(tm\right)\)

nguyễn ngọc trang
Xem chi tiết
Akai Haruma
16 tháng 7 2020 lúc 20:58

1.

ĐK: $-x^2+2x+4\geq 0$

PT \(\Rightarrow \left\{\begin{matrix} x-2\geq 0\\ 4+2x-x^2=(x-2)^2=x^2-4x+4\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq 2\\ 6x=2x^2\end{matrix}\right.\Rightarrow x=3\) (thỏa mãn)

Vậy...........

Akai Haruma
16 tháng 7 2020 lúc 21:00

2)

ĐK: $-5\leq x\leq 5$

PT \(\Rightarrow \left\{\begin{matrix} x-1\geq 0\\ 25-x^2=(x-1)^2=x^2-2x+1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 1\\ 2x^2-2x-24=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq 1\\ x^2-x-12=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 1\\ (x+3)(x-4)=0\end{matrix}\right.\)

\(\Rightarrow x=4\) (thỏa mãn)

Akai Haruma
16 tháng 7 2020 lúc 21:04

3)

ĐK: $x^2\leq 10$

PT $\Leftrightarrow (x+4)\sqrt{10-x^2}=(x+4)(x-2)$

$\Leftrightarrow (x+4)[\sqrt{10-x^2}-(x-2)]=0$

Nếu $x+4=0\Rightarrow x=-4$ (không thỏa mãn ĐKXĐ)

Nếu $\sqrt{10-x^2}-(x-2)=0$

$\Leftrightarrow \sqrt{10-x^2}=x-2$

\(\Rightarrow \left\{\begin{matrix} x-2\geq 0\\ 10-x^2=(x-2)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 2\\ 2x^2-4x-6=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq 0\\ 2(x-3)(x+1)=0\end{matrix}\right.\Rightarrow x=3\)

Đinh Thuận
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 11 2022 lúc 10:21

a: \(\Leftrightarrow6x^2+2x+8+\sqrt{3x^2+x+4}-18=0\)

\(\Leftrightarrow2\left(\sqrt[3]{3x^2+x+4}\right)^3+\sqrt[3]{3x^2+x+4}-18=0\)

=>\(3x^2+x+4=8\)

=>3x^2+x-4=0

=>x=1 hoặc x=-4/3

b: ĐKXĐ: x>0

Pt sẽ là \(x+8+9x-6\sqrt{x\left(x+8\right)}=0\)

=>\(10x+8=\sqrt{36x\left(x+8\right)}\)

=>36x^2+288x=100x^2+160x+64

=>x=1

Trang Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 6 2021 lúc 10:53

c) Ta có: \(C=\left(\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\right):\dfrac{\sqrt{x}}{x-4}\)

\(=\dfrac{\sqrt{x}-2+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}}\)

\(=\dfrac{2\sqrt{x}}{\sqrt{x}}=2\)

d)

Sửa đề: \(D=\dfrac{8+x\left(1+\sqrt{x-2\sqrt{x}+1}\right)}{\left(x-4\right)\left(x-2\sqrt{x}+4\right)}+\dfrac{x-3\sqrt{x}}{2\left(x-\sqrt{x}-6\right)}\)

Ta có: \(D=\dfrac{8+x\left(1+\sqrt{x-2\sqrt{x}+1}\right)}{\left(x-4\right)\left(x-2\sqrt{x}+4\right)}+\dfrac{x-3\sqrt{x}}{2\left(x-\sqrt{x}-6\right)}\)

\(=\dfrac{8+x\left(1+\sqrt{x}-1\right)}{\left(x-4\right)\left(x-2\sqrt{x}+4\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{x\sqrt{x}+8}{\left(x-4\right)\left(x-2\sqrt{x}+4\right)}+\dfrac{\sqrt{x}}{2\left(\sqrt{x}+2\right)}\)

\(=\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}}{2\left(\sqrt{x}+2\right)}\)

\(=\dfrac{1}{\sqrt{x}-2}+\dfrac{\sqrt{x}}{2\left(\sqrt{x}+2\right)}\)

\(=\dfrac{2\left(\sqrt{x}+2\right)+\sqrt{x}\left(\sqrt{x}-2\right)}{2\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{2\sqrt{x}+4+x-2\sqrt{x}}{2\left(x-4\right)}\)

\(=\dfrac{x+4}{2x-8}\)

Kiều Ngọc Tú Anh
Xem chi tiết
Mai Anh Phạm
Xem chi tiết
Mai Anh Phạm
7 tháng 5 2021 lúc 8:20

câu 2 rút gọn A và tìm các giá trị nguyên của x để A nhận giá trị âm

Kiều Vũ Linh
7 tháng 5 2021 lúc 8:30

1) So sánh:

N = \(\dfrac{5+\sqrt{5}}{\sqrt{5}+1}-\sqrt{6-2\sqrt{5}}\)

\(=\dfrac{\sqrt{5}\left(\sqrt{5}+1\right)}{\sqrt{5}+1}-\sqrt{\left(\sqrt{5}-1\right)^2}\)

\(=\sqrt{5}-\left(\sqrt{5}-1\right)=1\)

M = \(\sqrt{18}-\sqrt{8}\)

\(=3\sqrt{2}-2\sqrt{2}\)

\(=\sqrt{2}\)

Ta có: \(1=\sqrt{1}\)

Mà 1 < 2

\(\Rightarrow\sqrt{1}< \sqrt{2}\)

Hay 1 \(< \sqrt{2}\)

Vậy N < M
 

Kiều Vũ Linh
7 tháng 5 2021 lúc 9:09

2) Với \(x>0;x\ne4;x\ne9\), ta có:

A = \(\left(\dfrac{\sqrt{x}}{3+\sqrt{x}}+\dfrac{2x}{9-x}\right):\left(\dfrac{x-4}{x-3\sqrt{x}}-\dfrac{2}{\sqrt{x}}\right)\)

\(=\left[\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}-\dfrac{2x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right]:\left[\dfrac{x-4}{\sqrt{x}\left(\sqrt{x}-3\right)}-\dfrac{2\left(\sqrt{x}-3\right)}{\sqrt{x}\left(\sqrt{x}-3\right)}\right]\)

\(=\dfrac{x-3\sqrt{x}-2x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\dfrac{x-4-2\sqrt{x}+6}{\sqrt{x}\left(\sqrt{x-3}\right)}\)

\(=\dfrac{-x-3\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{x-2\sqrt{x}+2}\)

\(=\dfrac{-\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{x-2\sqrt{x}+2}\)

\(=\dfrac{-x}{x-2\sqrt{x}+2}\)

Linh Nhi
Xem chi tiết
Nguyễn Nhật Minh
5 tháng 7 2018 lúc 9:24

\(a.\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8+6\sqrt{x-1}}=5\)

\(\text{⇔}\sqrt{x-1-4\sqrt{x-1}+4}+\sqrt{x-1+6\sqrt{x-1}+9}=5\)

\(\text{⇔}\text{ |}\sqrt{x-1}-2\text{ |}+\text{ |}\sqrt{x-1}+3\text{ |}=5\) ( x ≥ 1 )

\(\text{ |}\sqrt{x-1}-2\text{ |}+\sqrt{x-1}+3=5\) ( 1 )

+) Với : \(\sqrt{x-1}>2\)\(x>5\) , ta có :

( 1) ⇔ \(\sqrt{x-1}-2+\sqrt{x-1}+2=5\)

\(2\sqrt{x-1}=5\)\(x=\dfrac{29}{4}\left(TM\right)\)

+) Với : \(\sqrt{x-1}< 2\text{⇔}x< 5\) , ta có :

( 1) ⇔ \(5=5\) ( luôn đúng )

KL.............

\(b.\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=x-1\)

\(\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}=x-1\)

\(\text{ |}\sqrt{x-1}+1\text{ |}+\text{ |}\sqrt{x-1}-1\text{ |}=x-1\)

Tới đây giải tương tự như trên nhé .

Còn lại Tương tự .

Cold Wind
5 tháng 7 2018 lúc 9:27

mỗi căn thức trên có dạng: \(\sqrt{a^2+b+2a\sqrt{b}}\)

ta sẽ phân tích thành: \(\sqrt{a^2+b+2a\sqrt{b}}=\sqrt{\left(\sqrt{b}-a\right)^2}\) (#)

** lấy căn lớn đầu tiên của câu a làm vd**

\(a^2+b=x+3\) (1)

\(2a\sqrt{b}=-4\sqrt{x-1}\) (2)

(2) => \(a\sqrt{b}=-2\sqrt{x-1}\) \(\Rightarrow\left\{{}\begin{matrix}a=-2\\\sqrt{b}=\sqrt{x-1}\end{matrix}\right.\) (*)

thử lại với (1): \(a^2+b=a^2+\left(\sqrt{b}\right)^2=\left(-2\right)^2+\left(\sqrt{x-1}\right)^2=4+x-1=x+3\)

Nếu VT (a^2 +b) bằng VP (x+3) thì đã tìm được a và b đúng , tức là dấu suy ra cuối của (*) đúng và biểu thức có thể phân tích thành dạng căn bình phương 1 biểu thức (dạng (#))

ráp a, căn b vào công thức (#), ta đc:

\(\sqrt{x+3-4\sqrt{x-1}}=\sqrt{2+x-1-4\sqrt{x-1}}=\sqrt{\left(\sqrt{x-1}-\left(-2\right)\right)^2}=\sqrt{\left(\sqrt{x-1}+2\right)^2}=\left|\sqrt{x-1}+2\right|\)

***************

sau khi phá căn các biểu thức trong phương trình rồi thì giải phương trình chứa dấu GTTĐ bằng cách xét 4 trường hợp.

Sau khi phá hết căn lớn, phương trình sẽ có dạng như sau:

\(\left|A\right|+\left|B\right|=5\) (số 5 là lấy của câu a, làm vd thôi, còn số gì cũng đc)

chia 4 trường hợp: \(\left[{}\begin{matrix}\left\{{}\begin{matrix}A< 0\\B< 0\end{matrix}\right.\\\left\{{}\begin{matrix}A\ge0\\B\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}A< 0\\B\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}A\ge0\\B< 0\end{matrix}\right.\end{matrix}\right.\)

(thêm dấu bằng vào 1 loại dấu thôi (lớn > hoặc bé <)

dựa vào dấu của biểu thức đang xét mà bỏ dấu GTTĐ. Sau khi ra được x thì thử lại vào đk (không được CHỈ thử vào phương trình, vì nghiệm có thể đúng trong trường hợp này nhưng sai trong trường hợp khác, dẫn đến nhận nhầm nghiệm)

꧁❥Hikari-Chanツ꧂
Xem chi tiết
Hoàng Kiều Quỳnh Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 2 2022 lúc 20:20

a: \(\Leftrightarrow\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\cdot3\sqrt{x-2}+6\cdot\dfrac{\sqrt{x-2}}{9}=-4\)

\(\Leftrightarrow\sqrt{x-2}=4\)

=>x-2=16

hay x=18

b: \(\Leftrightarrow\left|3x+2\right|=4x\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+2=4x\left(x>=-\dfrac{2}{3}\right)\\3x+2=-4x\left(x< -\dfrac{2}{3}\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(nhận\right)\\x=-\dfrac{2}{7}\left(nhận\right)\end{matrix}\right.\)

c: \(\Leftrightarrow3\sqrt{x-2}-2\sqrt{x-2}+3\sqrt{x-2}=40\)

\(\Leftrightarrow4\sqrt{x-2}=40\)

=>x-2=100

hay x=102

d: =>5x-6=9

hay x=3

Đào Tùng Dương
6 tháng 2 2022 lúc 20:26

\(a,\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\sqrt{9x-18}+6\sqrt{\dfrac{x-2}{81}}=-4\left(dk:x\ge2\right)\)

\(\Leftrightarrow\dfrac{1}{3}\sqrt{x-2}-2\sqrt{x-2}+\dfrac{2}{3}\sqrt{x-2}=-4\)

\(\Leftrightarrow\sqrt{x-2}=4\)

\(\Leftrightarrow x-2=16\)

\(\Leftrightarrow x=18\left(tmdk\right)\)

b,\(\sqrt{9x^2-12x+4=3x\left(dk:x\ge0\right)}\)

\(\Leftrightarrow\sqrt{\left(3x-2\right)^2}=3x\)

\(\Leftrightarrow\left|3x-2\right|=3x\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x-2=3x\\3x-2=-3x\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x\in\varnothing\\x=\dfrac{1}{3}\left(tmdk\right)\end{matrix}\right.\)

Các câu còn lại làm tương tự nhé 

Minh Hiếu
6 tháng 2 2022 lúc 20:26

\(\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\sqrt{9x-18}+6\sqrt{\dfrac{x-2}{81}}=-4\) (đk: x≥2)

\(\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\sqrt{9\left(x-2\right)}+6\sqrt{\dfrac{1}{81}\left(x-2\right)}=-4\)

\(\dfrac{1}{3}\sqrt{x-2}-2\sqrt{x-2}+\dfrac{2}{3}\sqrt{x-2}=-4\)

\(\dfrac{1}{3}\sqrt{x-2}-\dfrac{4}{3}\sqrt{x-2}=-4\)

\(-\sqrt{x-2}=-4\)

\(\sqrt{x-2}=4\)

\(\left|x-2\right|=16\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=16\\x-2=-16\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=18\left(TM\right)\\x=-14\left(L\right)\end{matrix}\right.\)