Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mai Quỳnh Anh
Xem chi tiết
Thị Giang Trịnh
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 5 2022 lúc 20:46

a: Xét tứ giác MAOB có \(\widehat{MAO}+\widehat{MBO}=180^0\)

nên MAOB là tứ giác nội tiếp

b: Xét (O) có

ΔABC nội tiếp

AC là đường kính

Do đó;ΔABC vuông tại B

Xét ΔACD vuông tại C có CB là đường cao

nên \(AB\cdot AD=AC^2=4R^2\)

ERROR?
20 tháng 5 2022 lúc 20:47

 Giải thích các bước giải:

a.Ta có: MA,MBMA,MB là tiếp tuyến của (O)→MO⊥AB(O)→MO⊥AB

Mà CDCD là tiếp tuyến của (O)→CD⊥AC(O)→CD⊥AC

→ˆOID=ˆOCD=90o→OID^=OCD^=90o

→O,I,D,C∈→O,I,D,C∈ đường tròn đường kính ODOD

b.Ta có: ˆAIO=ˆACD=90oAIO^=ACD^=90o

             ˆOAI=ˆCADOAI^=CAD^

→ΔAIO∼ΔACD(g.g)→ΔAIO∼ΔACD(g.g)

→AIAC=AOAD→AIAC=AOAD

→AI.AD=AO.AC=R⋅2R=2R2=8→AI.AD=AO.AC=R⋅2R=2R2=8

→2AI.AD=16→2AI.AD=16

→AB.AD=16→AB.AD=16

Vì MA,MBMA,MB là tiếp tuyến của (O)→MO⊥AB=I(O)→MO⊥AB=I là trung điểm ABAB

→AB=2AI→AB=2AI

c.Gọi MC∩OD=EMC∩OD=E

Ta có:

ˆCAD=ˆOAI=90o−ˆIAM=ˆAMI=ˆAMOCAD^=OAI^=90o−IAM^=AMI^=AMO^

Vì CDCD là tiếp tuyến của (O)(O)

Mà ˆMAO=ˆDCA=90oMAO^=DCA^=90o

→ΔMAO∼ΔACD(g.g)→ΔMAO∼ΔACD(g.g)

→MAAC=AOCD→MAAC=AOCD

→MAAC=OCCD→MAAC=OCCD

→MACO=ACCD→MACO=ACCD

Mà ˆMAC=ˆOCD=90oMAC^=OCD^=90o

→ΔMAC∼ΔOCD(c.g.c)→ΔMAC∼ΔOCD(c.g.c)

→ˆCOD=ˆCMA→COD^=CMA^

→ˆCOE=ˆCMA→COE^=CMA^

Do ˆOCE=ˆACMOCE^=ACM^

→ΔCEO∼ΔCAM(g.g)→ΔCEO∼ΔCAM(g.g)

→ˆCEO=ˆCAM=90o→CEO^=CAM^=90o

→OD⊥MC

 

 

 

 

9- Thành Danh.9a8
20 tháng 5 2022 lúc 20:49

a hình tự vẽ\

xét tứ giác maob có

góc MAO = 90 độ ( MA là tiế tuyến)

góc MBO=90 độ ( MB là tiếp tuyến)

-> MAO + MBO = 180 độ

=> tứ giác MAOB nội tiếp

HỒNG NGỌC
Xem chi tiết
Nguyễn Thị Thanh Trúc
Xem chi tiết
Trần Công Huy
21 tháng 5 2018 lúc 21:04

mỗi câu C là khó thoi

Chi Khánh
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 1 lúc 16:46

Em coi lại đề, từ điểm M làm sao vẽ các tiếp tuyến AB, AC được nhỉ? Sau đó lại đường kính AC nữa, nghĩa là AC vừa là tiếp tuyến vừa là đường kính?

 

Nguyễn Việt Lâm
12 tháng 1 lúc 10:42

a. Ý này đơn giản em tự chứng mình

b.

Ta có \(\widehat{IAO}=\widehat{AMO}\) (cùng phụ \(\widehat{AOM}\))

\(\Rightarrow\Delta_VACD\sim\Delta_VMAO\left(g.g\right)\) 

\(\Rightarrow\dfrac{AC}{AM}=\dfrac{CD}{OA}=\dfrac{CD}{OC}\) (do OA=OC)

\(\Rightarrow\dfrac{AC}{CD}=\dfrac{AM}{OC}\)

\(\Rightarrow\Delta_VACM\sim\Delta_VCDO\left(c.g.c\right)\)

\(\Rightarrow\widehat{COD}=\widehat{AMC}\)

Mà \(\widehat{AMC}+\widehat{OCK}=90^0\) (tam giác ACM vuông tại A)

\(\Rightarrow\widehat{COD}+\widehat{OCK}=90^0\Rightarrow\widehat{OKC}=90^0\)

\(\Rightarrow\Delta_VMKO\sim\Delta_VMIN\) (chung góc \(\widehat{OMK}\))

\(\Rightarrow\dfrac{MK}{IM}=\dfrac{MO}{MN}\Rightarrow MN.MK=MI.MO\)

Mặt khác theo hệ thức lượng trong tam giác vuông MAO với đường cao AI:

\(MA^2=MI.MO\)

\(\Rightarrow MA^2=MN.MK\)

Nguyễn Việt Lâm
12 tháng 1 lúc 10:43

loading...

Nguyễn Hoàng My
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 2 2022 lúc 15:38

a: Xét tứ giác MAOB có \(\widehat{MAO}+\widehat{MBO}=180^0\)

nên MAOB là tứ giác nội tiếp

Xét (O) có

ΔADC nội tiếp

AC là đường kính

Do đó: ΔADC vuông tại D

Xét ΔCAM vuông tại A có AD là đường cao

nên \(AM^2=MB^2=MD\cdot MC\)

b: Xét (O) có

MA là tiếp tuyến

MB là tiếp tuyến

Do đó: MA=MB

hay M nằm trên đường trung trực của AB(1)

Ta có: OA=OB

nên O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra MO là đường trung trực của BA

hay MO⊥AB

Xét ΔMAO vuông tại A có AH là đường cao

nên \(MH\cdot MO=MA^2=MC\cdot MD\)

Trần Duy Quang
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 4 2023 lúc 20:11

a: góc MAO+góc MBO=180 độ

=>MAOB nội tiếp

b: Xét ΔMAC và ΔMDA có

góc MAC=góc MDA

góc AMC chung

=>ΔMAC đồg dạngvơi ΔMDA

=>MA/MD=MC/MA

=>MA^2=MD*MC

bin0707
Xem chi tiết
Nguyễn Hoàng Minh
26 tháng 12 2021 lúc 13:44

undefined

Hoàng Minh Quân
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 12 2021 lúc 10:56

a: Xét ΔOAM và ΔOBM có

OA=OB

\(\widehat{AOM}=\widehat{BOM}\)

OM chung

Do đó: ΔOAM=ΔOBM

Suy ra: MB là tiếp tuyến của (O)