a: Xét tứ giác MAOB có \(\widehat{MAO}+\widehat{MBO}=180^0\)
nên MAOB là tứ giác nội tiếp
b: Xét (O) có
ΔABC nội tiếp
AC là đường kính
Do đó;ΔABC vuông tại B
Xét ΔACD vuông tại C có CB là đường cao
nên \(AB\cdot AD=AC^2=4R^2\)
Giải thích các bước giải:
a.Ta có: MA,MBMA,MB là tiếp tuyến của (O)→MO⊥AB(O)→MO⊥AB
Mà CDCD là tiếp tuyến của (O)→CD⊥AC(O)→CD⊥AC
→ˆOID=ˆOCD=90o→OID^=OCD^=90o
→O,I,D,C∈→O,I,D,C∈ đường tròn đường kính ODOD
b.Ta có: ˆAIO=ˆACD=90oAIO^=ACD^=90o
ˆOAI=ˆCADOAI^=CAD^
→ΔAIO∼ΔACD(g.g)→ΔAIO∼ΔACD(g.g)
→AIAC=AOAD→AIAC=AOAD
→AI.AD=AO.AC=R⋅2R=2R2=8→AI.AD=AO.AC=R⋅2R=2R2=8
→2AI.AD=16→2AI.AD=16
→AB.AD=16→AB.AD=16
Vì MA,MBMA,MB là tiếp tuyến của (O)→MO⊥AB=I(O)→MO⊥AB=I là trung điểm ABAB
→AB=2AI→AB=2AI
c.Gọi MC∩OD=EMC∩OD=E
Ta có:
ˆCAD=ˆOAI=90o−ˆIAM=ˆAMI=ˆAMOCAD^=OAI^=90o−IAM^=AMI^=AMO^
Vì CDCD là tiếp tuyến của (O)(O)
Mà ˆMAO=ˆDCA=90oMAO^=DCA^=90o
→ΔMAO∼ΔACD(g.g)→ΔMAO∼ΔACD(g.g)
→MAAC=AOCD→MAAC=AOCD
→MAAC=OCCD→MAAC=OCCD
→MACO=ACCD→MACO=ACCD
Mà ˆMAC=ˆOCD=90oMAC^=OCD^=90o
→ΔMAC∼ΔOCD(c.g.c)→ΔMAC∼ΔOCD(c.g.c)
→ˆCOD=ˆCMA→COD^=CMA^
→ˆCOE=ˆCMA→COE^=CMA^
Do ˆOCE=ˆACMOCE^=ACM^
→ΔCEO∼ΔCAM(g.g)→ΔCEO∼ΔCAM(g.g)
→ˆCEO=ˆCAM=90o→CEO^=CAM^=90o
→OD⊥MC
a hình tự vẽ\
xét tứ giác maob có
góc MAO = 90 độ ( MA là tiế tuyến)
góc MBO=90 độ ( MB là tiếp tuyến)
-> MAO + MBO = 180 độ
=> tứ giác MAOB nội tiếp