tìm nghiệm của đa thức sau \(P\left(x\right)=\left(1-\sqrt{2}\right)x^2-x+\sqrt{2}\)
Cho x>1 .Hãy rút gọn đa thức sau:
\(M=1-\left[\left(\dfrac{1}{\sqrt{x}-1}-\sqrt{x-1}\right):\left(\dfrac{1}{\sqrt{x+1}}-\dfrac{1}{\sqrt{x-1}}\right):\dfrac{\sqrt{x}+1.\sqrt{x^2-1}}{\left(x-1\right)\sqrt{x+1}-\left(x+1\right).\sqrt{x-1}}\right]\)
1. Tìm tất cả các đa thức \(P\left(x\right)\) khác đa thức 0 thỏa mãn \(P\left(2014\right)=2046\) và \(P\left(x\right)=\sqrt{P\left(x^2+1\right)-33}+32,\forall x\ge0\)
2. Tìm tất cả các đa thức \(P\left(x\right)\inℤ\left[x\right]\) bậc \(n\) thỏa mãn điều kiện sau: \(\left[P\left(2x\right)\right]^2=16P\left(x^2\right),\forall x\inℝ\)
1. Để tìm các đa thức P(x) thỏa mãn điều kiện P(2014) = 2046 và P(x) = P(x^2 + 1) - 33 + 32, ∀x ≥ 0, ta có thể sử dụng phương pháp đệ quy. Bước 1: Xác định bậc của đa thức P(x). Vì không có thông tin về bậc của đa thức, chúng ta sẽ giả sử nó là một hằng số n. Bước 2: Xây dựng công thức tổng quát cho đa thức P(x). Với bậc n đã xác định, ta có: P(x) = a_n * x^n + a_{n-1} * x^{n-1} + ... + a_0 Bước 3: Áp dụng điều kiện để tìm các hệ số a_i. Thay x = 2014 vào biểu thức và giải phương trình: P(2014) = a_n * (2014)^n + a_{n-1} * (2014)^{n-1} + ... + a_0 = 2046 Giải phương trình này để tìm các giá trị của các hệ số. Bước 4: Áp dụng công thức tái lập để tính toán các giá trị tiếp theo của P(x): P(x) = P(x^2+1)-33+32 Áp dụng công thức này lặp lại cho đến khi đạt được kết quả cuối cùng. 2. Để tìm các đa thức P(x) ∈ Z[x] bậc n thỏa mãn điều kiện [P(2x)]^2 = 16P(x^2), ∀x ∈ R, ta có thể sử dụng phương pháp đệ quy tương tự như trên. Bước 1: Xác định bậc của đa thức P(x). Giả sử bậc của P(x) là n. Bước 2: Xây dựng công thức tổng quát cho P(x): P(x) = a_n * x^n + a_{n-1} * x^{n-1} + ... + a_0 Bước 3: Áp dụng điều kiện để tìm các hệ số a_i. Thay x = 2x vào biểu thức và giải phương trình: [P(2x)]^2 = (a_n * (2x)^n + a_{n-1} * (2x)^{n-1} + ... + a_0)^2 = 16P(x^2) Giải phương trình này để tìm các giá trị của các hệ số. Bước 4: Áp dụng công thức tái lập để tính toán các giá trị tiếp theo của P(x): [P(4x)]^2 = (a_n * (4x)^n + a_{n-1} * (4x)^{n-1} + ... + a_0)^2 = 16P(x^2) Lặp lại quá trình này cho đến khi đạt được kết quả cuối cùng.
Xét đa thức P(x) = ax2 + bx + c. Chứng minh rằng:
a, Nếu a + b + c = 0 thì x = 1 là nghiệm của P(x)
b, Nếu a - b + c thì x = -1 là nghiệm của P(x)
Áp dụng hãy tìm nghiệm của các đa thức sau:
A(x) = \(\left(\sqrt{5}-1\right)x^2-\sqrt{5}x+1\)
B(x) = \(\left(1+\sqrt{3}\right)x^2+x-\sqrt{3}\)
a: Đặt A(x)=0
\(\Leftrightarrow x^2\left(\sqrt{5}-1\right)-x\sqrt{5}+1=0\)
\(a=\sqrt{5}-1;b=-\sqrt{5};c=1\)
Vì a+b+c=0 nên phương trình có hai nghiệm phân biệt là:
\(x_1=1;x_2=\dfrac{c}{a}=\dfrac{1}{\sqrt{5}-1}=\dfrac{\sqrt{5}+1}{4}\)
b: Đặt B(x)=0
\(\Leftrightarrow x^2\left(\sqrt{3}+1\right)+x-\sqrt{3}=0\)
Vì a-b+c=0 nên phương trình có hai nghiệm là:
\(x_1=-1;x_2=\dfrac{\sqrt{3}}{\sqrt{3}+1}=\dfrac{3-\sqrt{3}}{2}\)
Tìm điều kiện của tham số m để hệ sau đây có nghiệm
\(\left\{{}\begin{matrix}x+\sqrt{x^2+16}\le\dfrac{40}{\sqrt{x^2+16}}\\x\left(x-2\right)\left(\sqrt{x^2+y^2+3}-1\right)+\left(x^3+x+m-2\right)^2=0\end{matrix}\right.\)
c1: Rút gọn biểu thức A=\(\left(\dfrac{1}{x-2\sqrt{x}}-\dfrac{2}{6-3\sqrt{x}}\right):\left(\dfrac{2}{3}+\dfrac{1}{\sqrt{x}}\right)\)
c2: Cho phương trình: \(x^2-2\left(2m-1\right)x+m^2-4m=0\left(1\right)\)
Tìm m để phương trình (1) có hai nghiệm phân biệt x1, x2 thoả mãn hệ thức \(x_1+x_2=\dfrac{-8}{x_1+x_2}\)
1:
\(=\left(\dfrac{1}{x-2\sqrt{x}}+\dfrac{2}{3\sqrt{x}-6}\right):\dfrac{2\sqrt{x}+3}{3\sqrt{x}}\)
\(=\dfrac{3+2\sqrt{x}}{3\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\dfrac{3\sqrt{x}}{2\sqrt{x}+3}=\dfrac{1}{\sqrt{x}-2}\)
Rút gọn các biểu thức sau:
A= \(3\left(x+2\sqrt{x}\right)-\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)
B= \(\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)-2\left(\sqrt{x}-1\right)^2\)
C= \(3x-3\sqrt{x}-2+\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)
D= \(\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)-\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)\)
E= \(\left(\sqrt{x}+4\right)\left(\sqrt{x}-4\right)-\left(2\sqrt{x}-1\right)\left(\sqrt{x}+2\right)\)
\(A=3\left(x+2\sqrt{x}\right)-\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)
\(=3x+6\sqrt{x}-\left(x-1\right)\)
\(=3x+6\sqrt{x}-x+1\)
\(=2x+6\sqrt{x}+1\)
\(B=\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)-2\left(\sqrt{x}-1\right)^2\)
\(=x+3\sqrt{x}+\sqrt{x}+3-2\left(x-2\sqrt{x}+1\right)\)
\(=x+4\sqrt{x}+3-2x+4\sqrt{x}-2\)
\(=-x+8\sqrt{x}+1\)
\(C=3x-3\sqrt{x}-2+\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)
\(=3x-3\sqrt{x}-2+\left(\sqrt{x^2}-1\right)\)
\(=3x-3\sqrt{x}-2+x-1\)
\(=4x-3\sqrt{x}-3\)
\(D=\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)-\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)\)
\(=x-9-\left(2x-3\sqrt{x}-2\right)\)
\(=x-9-2x+3\sqrt{x}+2\)
\(=-x+3\sqrt{x}-7\)
\(E=\left(\sqrt{x}+4\right)\left(\sqrt{x}-4\right)-2\left(2\sqrt{x}-1\right)\left(\sqrt{x}+2\right)\)
\(=\sqrt{x^2}-2^2-2\left(2x+4\sqrt{x}-\sqrt{x}-2\right)\)
\(=x-4-2\left(2x+3\sqrt{x}-2\right)\)
\(=x-4-4x-6\sqrt{x}+4\)
\(=-3-6\sqrt{x}\)
Tìm nghiệm của các đa thức sau:
a)\(f\left(x\right)=x^2-2\) b)\(g\left(x\right)=x^2+\sqrt{2}\)
c) \(h\left(x\right)=x^2+2x-3\)
a/ \(F\left(x\right)=x^2-2=0\)
\(\Leftrightarrow x^2=2\)
\(\Leftrightarrow x=\sqrt{2};-\sqrt{2}\)
b/ \(G\left(x\right)=x^2+\sqrt{2}=0\)
\(\Leftrightarrow x^2=-\sqrt{2}\)(Vô lý)
=> G(x) vô nghiệm
c/ \(H\left(x\right)=x^2+2x-3=0\)
\(\Leftrightarrow x^2-x+3x-3=0\)
\(\Leftrightarrow x\left(x-1\right)+3\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+3\right)=0\)
Tới đây dễ rồi nhé
Cho \(x\)=\(\sqrt{\frac{1}{2\left(\sqrt{3}-1\right)}-\frac{3}{2\left(\sqrt{3}+1\right)}}\)là nghiệm của đa thức \(F\left(x\right)\)=\(2x^2+2x-1\)
Tính M = \(4\left(x+1\right)^{16}-2^{15}+2x+1\)
Tìm giá trị nhỏ nhất của biểu thức :
\(P\left(x,y\right)=\sqrt{\left(x+1\right)^2+\left(y-1\right)^2}+\sqrt{\left(x-1\right)^2+\left(y+1\right)^2}+\sqrt{\left(x+2\right)^2+\left(y+2\right)^2}\)
Bài này cô cũng nghĩ là dùng phương pháp toa độ, chuyển qua hình học giải tích Oxy để giải.
Cô làm như sau:
Từ biểu thức P ta nghĩ đến công thức tính khoảng cách giữa hai điểm. Từ đó ta đặt \(A\left(-1;1\right);B\left(1;-1\right);C\left(-2;-2\right)\) và \(D\left(x;y\right)\). Khi đó ta thấy ngay \(P\left(x;y\right)=DA+DB+DC\)
Ta vẽ các điểm trên trục tọa độ:
Vậy điểm D cần tìm là điểm tạo với các cạnh tam giác góc 120o. (Để hiểu rõ thêm e có thể đọc về điểm Toricenli của tam giác ABC). Do tam giác ABC cân tại C nên D thuộc CO, nói cách khác xD = yD.
Do \(\widehat{ADB}=120^o\Rightarrow\widehat{ADO}=60^o.\) Vậy thì \(tan60^o=\sqrt{3}=\frac{OA}{DO}\)
Do \(OA=\sqrt{2}\Rightarrow DO=\frac{\sqrt{2}}{\sqrt{3}}=\sqrt{\frac{2}{3}}\)
Vậy \(\sqrt{x_D^2+y_D^2}=\sqrt{2y_D^2}=\sqrt{\frac{2}{3}}\Rightarrow\left|x_D\right|=\left|y_D\right|=\frac{1}{\sqrt{3}}\). Từ hình vẽ ta có: \(x_D=y_D=-\frac{1}{\sqrt{3}}.\)
Vậy \(P\left(x;y\right)=DA+DB+DC=\sqrt{\left(-\frac{1}{\sqrt{3}}+1\right)^2+\left(-\frac{1}{\sqrt{3}}-1\right)^2}\)
\(+\sqrt{\left(-\frac{1}{\sqrt{3}}-1\right)^2+\left(-\frac{1}{\sqrt{3}}+1\right)^2}+\sqrt{\left(-\frac{1}{\sqrt{3}}+2\right)^2+\left(-\frac{1}{\sqrt{3}}+2\right)^2}\)
\(=\sqrt{6}+2\sqrt{2}.\)
Vậy min P(x;y) = \(\sqrt{6}+2\sqrt{2}\) khi \(x=y=-\frac{1}{\sqrt{3}}.\)
T cũng nghĩ dùng hình học giải tích Oxy giải thì được