Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vinne
Xem chi tiết
Lê Song Phương
Xem chi tiết
Phạm Ngọc Tấn
6 tháng 8 2023 lúc 18:18

1. Để tìm các đa thức P(x) thỏa mãn điều kiện P(2014) = 2046 và P(x) = P(x^2 + 1) - 33 + 32, ∀x ≥ 0, ta có thể sử dụng phương pháp đệ quy. Bước 1: Xác định bậc của đa thức P(x). Vì không có thông tin về bậc của đa thức, chúng ta sẽ giả sử nó là một hằng số n. Bước 2: Xây dựng công thức tổng quát cho đa thức P(x). Với bậc n đã xác định, ta có: P(x) = a_n * x^n + a_{n-1} * x^{n-1} + ... + a_0 Bước 3: Áp dụng điều kiện để tìm các hệ số a_i. Thay x = 2014 vào biểu thức và giải phương trình: P(2014) = a_n * (2014)^n + a_{n-1} * (2014)^{n-1} + ... + a_0 = 2046 Giải phương trình này để tìm các giá trị của các hệ số. Bước 4: Áp dụng công thức tái lập để tính toán các giá trị tiếp theo của P(x): P(x) = P(x^2+1)-33+32 Áp dụng công thức này lặp lại cho đến khi đạt được kết quả cuối cùng. 2. Để tìm các đa thức P(x) ∈ Z[x] bậc n thỏa mãn điều kiện [P(2x)]^2 = 16P(x^2), ∀x ∈ R, ta có thể sử dụng phương pháp đệ quy tương tự như trên. Bước 1: Xác định bậc của đa thức P(x). Giả sử bậc của P(x) là n. Bước 2: Xây dựng công thức tổng quát cho P(x): P(x) = a_n * x^n + a_{n-1} * x^{n-1} + ... + a_0 Bước 3: Áp dụng điều kiện để tìm các hệ số a_i. Thay x = 2x vào biểu thức và giải phương trình: [P(2x)]^2 = (a_n * (2x)^n + a_{n-1} * (2x)^{n-1} + ... + a_0)^2 = 16P(x^2) Giải phương trình này để tìm các giá trị của các hệ số. Bước 4: Áp dụng công thức tái lập để tính toán các giá trị tiếp theo của P(x): [P(4x)]^2 = (a_n * (4x)^n + a_{n-1} * (4x)^{n-1} + ... + a_0)^2 = 16P(x^2) Lặp lại quá trình này cho đến khi đạt được kết quả cuối cùng.

 

Đặng Hoài An
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 7 2022 lúc 23:31

a: Đặt A(x)=0

\(\Leftrightarrow x^2\left(\sqrt{5}-1\right)-x\sqrt{5}+1=0\)

\(a=\sqrt{5}-1;b=-\sqrt{5};c=1\)

Vì a+b+c=0 nên phương trình có hai nghiệm phân biệt là:

\(x_1=1;x_2=\dfrac{c}{a}=\dfrac{1}{\sqrt{5}-1}=\dfrac{\sqrt{5}+1}{4}\)

b: Đặt B(x)=0

\(\Leftrightarrow x^2\left(\sqrt{3}+1\right)+x-\sqrt{3}=0\)

Vì a-b+c=0 nên phương trình có hai nghiệm là:

\(x_1=-1;x_2=\dfrac{\sqrt{3}}{\sqrt{3}+1}=\dfrac{3-\sqrt{3}}{2}\)

Kinder
Xem chi tiết
quang
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 4 2023 lúc 16:33

1:

\(=\left(\dfrac{1}{x-2\sqrt{x}}+\dfrac{2}{3\sqrt{x}-6}\right):\dfrac{2\sqrt{x}+3}{3\sqrt{x}}\)

\(=\dfrac{3+2\sqrt{x}}{3\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\dfrac{3\sqrt{x}}{2\sqrt{x}+3}=\dfrac{1}{\sqrt{x}-2}\)

Duong Tue Tam
Xem chi tiết
YangSu
16 tháng 6 2023 lúc 10:34

\(A=3\left(x+2\sqrt{x}\right)-\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)

\(=3x+6\sqrt{x}-\left(x-1\right)\)

\(=3x+6\sqrt{x}-x+1\)

\(=2x+6\sqrt{x}+1\)

\(B=\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)-2\left(\sqrt{x}-1\right)^2\)

\(=x+3\sqrt{x}+\sqrt{x}+3-2\left(x-2\sqrt{x}+1\right)\)

\(=x+4\sqrt{x}+3-2x+4\sqrt{x}-2\)

\(=-x+8\sqrt{x}+1\)

\(C=3x-3\sqrt{x}-2+\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)

\(=3x-3\sqrt{x}-2+\left(\sqrt{x^2}-1\right)\)

\(=3x-3\sqrt{x}-2+x-1\)

\(=4x-3\sqrt{x}-3\)

\(D=\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)-\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)\)

\(=x-9-\left(2x-3\sqrt{x}-2\right)\)

\(=x-9-2x+3\sqrt{x}+2\)

\(=-x+3\sqrt{x}-7\)

\(E=\left(\sqrt{x}+4\right)\left(\sqrt{x}-4\right)-2\left(2\sqrt{x}-1\right)\left(\sqrt{x}+2\right)\)

\(=\sqrt{x^2}-2^2-2\left(2x+4\sqrt{x}-\sqrt{x}-2\right)\)

\(=x-4-2\left(2x+3\sqrt{x}-2\right)\)

\(=x-4-4x-6\sqrt{x}+4\)

\(=-3-6\sqrt{x}\)

Nguyễn Tất Đạt
Xem chi tiết
Vũ Như Mai
28 tháng 4 2017 lúc 7:48

a/ \(F\left(x\right)=x^2-2=0\)

               \(\Leftrightarrow x^2=2\)

               \(\Leftrightarrow x=\sqrt{2};-\sqrt{2}\)

b/ \(G\left(x\right)=x^2+\sqrt{2}=0\)

                 \(\Leftrightarrow x^2=-\sqrt{2}\)(Vô lý)

  => G(x) vô nghiệm

c/ \(H\left(x\right)=x^2+2x-3=0\)

                 \(\Leftrightarrow x^2-x+3x-3=0\)

                 \(\Leftrightarrow x\left(x-1\right)+3\left(x-1\right)=0\)

                  \(\Leftrightarrow\left(x-1\right)\left(x+3\right)=0\)
Tới đây dễ rồi nhé

Trần Thị Tuyết Chinh
27 tháng 4 2017 lúc 20:50

a) x-2 =0                                                                                         )


 => x2 =2    b

=> x=1

Tú Hàn Anh
Xem chi tiết
Hoàng Lê Bảo Ngọc
Xem chi tiết
Cô Hoàng Huyền
10 tháng 11 2016 lúc 14:11

Bài này cô cũng nghĩ là dùng phương pháp toa độ, chuyển qua hình học giải tích Oxy để giải.

Cô làm như sau:

Từ biểu thức P ta nghĩ đến công thức tính khoảng cách giữa hai điểm. Từ đó ta đặt \(A\left(-1;1\right);B\left(1;-1\right);C\left(-2;-2\right)\) và \(D\left(x;y\right)\). Khi đó ta thấy ngay \(P\left(x;y\right)=DA+DB+DC\)

Ta vẽ các điểm trên trục tọa độ:

?o?n th?ng f: ?o?n th?ng [A, C] ?o?n th?ng g: ?o?n th?ng [A, B] ?o?n th?ng h: ?o?n th?ng [C, B] ?o?n th?ng i: ?o?n th?ng [C, O] ?o?n th?ng j: ?o?n th?ng [A, D] ?o?n th?ng k: ?o?n th?ng [D, B] A = (-1, 1) A = (-1, 1) A = (-1, 1) B = (1.06, -1.14) B = (1.06, -1.14) B = (1.06, -1.14) C = (-2, -2) C = (-2, -2) C = (-2, -2) ?i?m O: Giao ?i?m c?a g, TrucHoanh ?i?m O: Giao ?i?m c?a g, TrucHoanh ?i?m O: Giao ?i?m c?a g, TrucHoanh ?i?m D: ?i?m tr�n i ?i?m D: ?i?m tr�n i ?i?m D: ?i?m tr�n i

Vậy điểm D cần tìm là điểm tạo với các cạnh tam giác góc 120o. (Để hiểu rõ thêm e có thể đọc về điểm Toricenli của tam giác ABC). Do tam giác ABC cân tại C nên D thuộc CO, nói cách khác xD = yD.

Do \(\widehat{ADB}=120^o\Rightarrow\widehat{ADO}=60^o.\) Vậy thì \(tan60^o=\sqrt{3}=\frac{OA}{DO}\)

Do \(OA=\sqrt{2}\Rightarrow DO=\frac{\sqrt{2}}{\sqrt{3}}=\sqrt{\frac{2}{3}}\)

Vậy \(\sqrt{x_D^2+y_D^2}=\sqrt{2y_D^2}=\sqrt{\frac{2}{3}}\Rightarrow\left|x_D\right|=\left|y_D\right|=\frac{1}{\sqrt{3}}\). Từ hình vẽ ta có:  \(x_D=y_D=-\frac{1}{\sqrt{3}}.\)

Vậy \(P\left(x;y\right)=DA+DB+DC=\sqrt{\left(-\frac{1}{\sqrt{3}}+1\right)^2+\left(-\frac{1}{\sqrt{3}}-1\right)^2}\)

\(+\sqrt{\left(-\frac{1}{\sqrt{3}}-1\right)^2+\left(-\frac{1}{\sqrt{3}}+1\right)^2}+\sqrt{\left(-\frac{1}{\sqrt{3}}+2\right)^2+\left(-\frac{1}{\sqrt{3}}+2\right)^2}\)

\(=\sqrt{6}+2\sqrt{2}.\)

Vậy min P(x;y) = \(\sqrt{6}+2\sqrt{2}\) khi \(x=y=-\frac{1}{\sqrt{3}}.\)

Vongola Famiglia
8 tháng 11 2016 lúc 22:59

Sử dụng HÌNH HỌC GIẢI TÍCH OXY 

alibaba nguyễn
9 tháng 11 2016 lúc 9:11

T cũng nghĩ dùng hình học giải tích Oxy giải thì được