Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lấp La Lấp Lánh
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 10 2021 lúc 19:19

\(a^2=\dfrac{\sqrt{2}}{4}\left(1-a\right)\)

\(\Rightarrow a^4=\dfrac{1}{8}\left(1-a\right)^2\)

\(\Rightarrow a^4+a+1=\dfrac{1}{8}\left(1-a\right)^2+a+1=\dfrac{1}{8}\left(a^2+6a+9\right)=\dfrac{1}{8}\left(a+3\right)^2\)

\(\Rightarrow\sqrt{a^4+a+1}-a^2=\sqrt{\dfrac{1}{8}\left(3+a\right)^2}-a^2=\dfrac{\sqrt{2}}{4}\left(a+3\right)-\dfrac{\sqrt{2}}{4}\left(1-a\right)=\dfrac{\sqrt{2}}{2}\left(a+1\right)\)

\(\Rightarrow\dfrac{a+1}{\sqrt{a^4+a+1}-a^2}=\dfrac{a+1}{\dfrac{\sqrt{2}}{2}\left(a+1\right)}=\sqrt{2}\)

Hoang Minh
Xem chi tiết
Hà Quang Minh
5 tháng 8 2023 lúc 12:07

a, Khi x = 2, ta được: 

\(A=\dfrac{4}{2\sqrt{2}-2}=2+2\sqrt{2}\)

b, \(B=\dfrac{\sqrt{x}-4}{x-2\sqrt{x}}+\dfrac{3}{\sqrt{x}-2}\\ \Rightarrow B=\dfrac{\sqrt{x}-4+3\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\\ \Rightarrow B=\dfrac{4\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(P=B:A=\dfrac{4\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}\left(2-\sqrt{x}\right)}{4}=-\left(\sqrt{x}-1\right)=1-\sqrt{x}\) (đpcm)

Nguyễn Thanh
Xem chi tiết
Trần Diệp Nhi
Xem chi tiết
Đặng Ngọc Hải
2 tháng 10 2018 lúc 20:15

ko biet

Trịnh Ngọc Hân
14 tháng 10 2018 lúc 19:27

Rút gọn biểu thức chứa căn bậc hai

Rút gọn biểu thức chứa căn bậc hai

loancute
Xem chi tiết
Nguyễn Trọng Chiến
6 tháng 3 2021 lúc 20:46

\(\dfrac{a}{\sqrt{a^2+1}}=\dfrac{a}{\sqrt{a^2+ab+ac+bc}}=\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\dfrac{a}{2}\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)=\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}\right)\) Chứng minh tương tự ta được:

\(\dfrac{b}{\sqrt{b^2+1}}\le\dfrac{1}{2}\left(\dfrac{b}{b+a}+\dfrac{b}{b+c}\right);\dfrac{c}{\sqrt{c^2+1}}\le\dfrac{1}{2}\left(\dfrac{c}{c+a}+\dfrac{c}{c+b}\right)\)

\(\Rightarrow\dfrac{a}{\sqrt{a^2+1}}+\dfrac{b}{\sqrt{b^2+1}}+\dfrac{c}{\sqrt{c^2+1}}\le\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}+\dfrac{b}{b+a}+\dfrac{b}{b+c}+\dfrac{c}{c+a}+\dfrac{c}{c+b}\right)=\dfrac{1}{2}\left(\dfrac{a+b}{a+b}+\dfrac{b+c}{b+c}+\dfrac{c+a}{c+a}\right)=\dfrac{1}{2}\left(1+1+1\right)=\dfrac{3}{2}\) Dấu = xảy ra \(\Leftrightarrow a=b=c=\dfrac{1}{\sqrt{3}}\)

Nguyễn Việt Lâm
6 tháng 3 2021 lúc 20:48

\(\dfrac{a}{\sqrt{a^2+1}}=\dfrac{a}{\sqrt{a^2+ab+bc+ca}}=\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}\right)\)

Tương tự: \(\dfrac{b}{\sqrt{b^2+1}}\le\dfrac{1}{2}\left(\dfrac{b}{a+b}+\dfrac{b}{b+c}\right)\) ; \(\dfrac{c}{\sqrt{c^2+1}}\le\dfrac{1}{2}\left(\dfrac{c}{c+a}+\dfrac{c}{b+c}\right)\)

Cộng vế:

\(VT\le\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{b}{a+b}+\dfrac{a}{a+c}+\dfrac{c}{a+c}+\dfrac{b}{b+c}+\dfrac{c}{b+c}\right)=\dfrac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\)

Quỳnh Ngân
Xem chi tiết
Akai Haruma
8 tháng 7 2018 lúc 10:50

Lời giải:

a) Ta thấy: \(a+b-2\sqrt{ab}=(\sqrt{a}-\sqrt{b})^2\geq 0, \forall a,b>0\)

\(\Rightarrow a+b\geq 2\sqrt{ab}>0\Rightarrow \frac{1}{a+b}\le \frac{1}{2\sqrt{ab}}\).

Vì $a> b$ nên dấu bằng không xảy ra . Tức \(\frac{1}{a+b}< \frac{1}{2\sqrt{ab}}\)

Ta có đpcm

b)

Áp dụng kết quả phần a:

\(\frac{1}{3}=\frac{1}{1+2}< \frac{1}{2\sqrt{2.1}}\)

\(\frac{1}{5}=\frac{1}{3+2}< \frac{1}{2\sqrt{2.3}}\)

\(\frac{1}{7}=\frac{1}{4+3}< \frac{1}{2\sqrt{4.3}}\)

.....

\(\frac{1}{4021}=\frac{1}{2011+2010}< \frac{1}{2\sqrt{2011.2010}}\)

Do đó:

\(\frac{\sqrt{2}-\sqrt{1}}{3}+\frac{\sqrt{3}-\sqrt{2}}{5}+...+\frac{\sqrt{2011}-\sqrt{2010}}{4021}\)

\(< \frac{\sqrt{2}-\sqrt{1}}{2\sqrt{2.1}}+\frac{\sqrt{3}-\sqrt{2}}{2\sqrt{3.2}}+\frac{\sqrt{4}-\sqrt{3}}{2\sqrt{4.3}}+....+\frac{\sqrt{2011}-\sqrt{2010}}{2\sqrt{2011.2010}}\)

\(=\frac{1}{2}-\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{2}}-\frac{1}{2\sqrt{3}}+...+\frac{1}{2\sqrt{2010}}-\frac{1}{2\sqrt{2011}}\)

\(=\frac{1}{2}-\frac{1}{2\sqrt{2011}}< \frac{1}{2}\) (đpcm)

Khôi 2k9
Xem chi tiết
Đặng Ngọc Quỳnh
2 tháng 1 2021 lúc 17:52

CM: \(a=\frac{1}{2}\sqrt{\sqrt{2}+\frac{1}{8}}-\frac{\sqrt{2}}{8}\Rightarrow a+\frac{\sqrt{2}}{8}=\frac{1}{2}\sqrt{\sqrt{2}+\frac{1}{8}}\)

\(\Leftrightarrow\left(a+\frac{\sqrt{2}}{8}\right)^2=\left(\frac{1}{2}\sqrt{\sqrt{2}+\frac{1}{8}}\right)^2\)\(\Leftrightarrow a^2+\frac{a\sqrt{2}}{4}+\frac{1}{32}=\frac{1}{4}\left(\sqrt{2}+\frac{1}{8}\right)\Leftrightarrow a^2+\frac{2\sqrt{a}}{4}+\frac{1}{32}=\frac{\sqrt{2}}{4}+\frac{1}{32}\)

\(\Leftrightarrow4a^2+\sqrt{2}a-\sqrt{2}=0\)

Theo trên: \(4a^2+\sqrt{2}a-\sqrt{2}=0\Rightarrow a^2=\frac{\sqrt{2}\left(1-a\right)}{4}\Rightarrow a^4=\frac{a^2-2a+1}{8}\)

\(\Rightarrow a^4+a+1=\frac{a^2-2a+1}{8}+a+1=\left(\frac{a+3}{2\sqrt{2}}\right)^2\)

\(B=a^2+\sqrt{a^4+a+1}=a^2+\frac{a+3}{2\sqrt{2}}=\frac{2\sqrt{2}a^2+a+3}{2\sqrt{2}}\)\(=\frac{4a^2+\sqrt{2}a+3\sqrt{2}}{4}=\frac{4\sqrt{2}}{4}=\sqrt{2}\)

Khách vãng lai đã xóa
Ly Ly
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 9 2021 lúc 21:19

Bài 1: 

Ta có: \(a+b\ge2\sqrt{ab}\)

\(b+c\ge2\sqrt{bc}\)

\(a+c\ge2\sqrt{ac}\)

Do đó: \(2\left(a+b+c\right)\ge2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\)

hay \(a+b+c\ge\sqrt{ab}+\sqrt{cb}+\sqrt{ac}\)

lê đức anh
Xem chi tiết
Nguyễn Văn A
4 tháng 4 2023 lúc 20:39

\(P=\dfrac{4}{a^2+b^2}+\dfrac{1}{ab}=\dfrac{4}{\left(a+b\right)^2-2ab}+\dfrac{1}{ab}=\dfrac{4}{2-2ab}+\dfrac{1}{ab}=\dfrac{2}{1-ab}+\dfrac{1}{ab}\)Áp dụng BĐT Bunhiacopxki dạng phân thức ta có:

\(\dfrac{2}{1-ab}+\dfrac{1}{ab}\ge\dfrac{\left(\sqrt{2}+1\right)^2}{1-ab+ab}=\left(\sqrt{2}+1\right)^2\) hay \(P\ge\left(\sqrt{2}+1\right)^2\)

Dấu "=" xảy ra khi \(\dfrac{\sqrt{2}}{1-ab}=\dfrac{1}{ab};a+b=\sqrt{2}\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=\sqrt{2}\\ab=\dfrac{1}{\sqrt{2}+1}\end{matrix}\right.\Leftrightarrow\left(a;b\right)=\left(1;-1+\sqrt{2}\right),\left(-1+\sqrt{2};1\right)\)