3sqrt(x ^ 2 - 4x + 9) = 3x - 9
sqrt(4x - 20) + 3sqrt((x - 5)/9) = 3
sqrt(4x - 20) + 3sqrt((x - 5)/9) = 3
Điều kiện: \(x\ge5\).
Phương trình tương đương với:
\(\sqrt{4\left(x-5\right)}+\dfrac{3\sqrt{x-5}}{\sqrt{9}}=3\)
\(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}=3\)
\(\Leftrightarrow\sqrt{x-5}=1\Rightarrow x-5=1\Leftrightarrow x=6\left(TM\right)\)
Vậy: Phương trình có tập nghiệm \(S=\left\{6\right\}\).
Giải pt sau :
3sqrt(5x+1) + 3sqrt(4x+4) - 5x - 9 = 0
6/(x - 3sqrt(x)) * 6/(x - 9)
\(\dfrac{6}{x-3\sqrt{x}}\cdot\dfrac{6}{x-9}=\dfrac{6\cdot6}{\left(x-3\sqrt{x}\right)\left(x-9\right)}\)
\(=\dfrac{36}{\sqrt{x}\left(\sqrt{x}-3\right)^2\cdot\left(\sqrt{x}+3\right)}\)
\(\dfrac{6}{x-3\sqrt{x}}\cdot\dfrac{6}{x-9}\) (sửa đề)
\(=\dfrac{6}{\sqrt{x}\left(\sqrt{x}-3\right)}\cdot\dfrac{6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{36}{\sqrt{x}\left(\sqrt{x}-3\right)^2\left(\sqrt{x}+3\right)}\)
Nhờ các thầy giải giúp:
Tìm giá trị x nguyên để biểu thức sau nguyên:
1. A=sqrt(x)+5/3sqrt(x)-1
2. B=(3x+2)/(2x2 -2)
3. C= (3x+2)/(x2+4x-5)
M = (3/(sqrt(x) + 3) + (x + 9)/(x - 9)) / ((2sqrt(x) - 5)/(x - 3sqrt(x)) - 1/(sqrt(x))) Rút gọn M giúp mik vs Thanks ah
\(M=\left(\dfrac{3}{\sqrt{x}+3}+\dfrac{x+9}{x-9}\right):\left(\dfrac{2\sqrt{x}-5}{x-3\sqrt{x}}-\dfrac{1}{\sqrt{x}}\right)\)
\(=\dfrac{3\sqrt{x}-9+x+9}{x-9}:\dfrac{2\sqrt{x}-5-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)}\)
\(=\dfrac{x+3\sqrt{x}}{x-9}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\sqrt{x}-2}\)
\(=\dfrac{x\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}=\dfrac{x}{\sqrt{x}-2}\)
tim nghiem da thuc 4x+9 , -5x+6 , x^2-1 , x^2-9 , x^2-x , x^2-2x , x^2-3x , 3x^2-4x
nghiệm của 4x+9
cho
4x+9=0
4x=-9
x=-9/4
vậy x=-9/4 là nghiệm của đa thứ 4x+9
nghiệm của -5x+6
cho
-5x+6=0
-5x=-6
x=-6:-5
x=6/5
vậy x=6/5 là nghiệm của đa thứ -5x+6
nghiệm của x2-1
cho
x2-1=0
x2=1
→x=1 hoặc x=-1
vậy x=1 hoặc x=-1 là nghiệm của đa thứ x2-1
nghiệm của x2-9
cho
x2-9=0
x2=9
→x=3 hoặc x=-3
vậy x=3 hoặc x=-3 là nghiệm của đa thứ x2-9
nghiệm của x2-x
cho
x2-x=0
→x2-1=0
→x=0
vậy x=0 là nghiệm của đa thức x2-x
` 4x + 9`
` 4x + 9=0`
` 4x = -9`
` x =-9/4`
Vậy.....
`-5x + 6 `
` -5x + 6=0`
` -5x = -6`
` x = 6/5`
Vậy....
` x^2 -1`
` x^2-1=0`
` ( x-1).(x+1)
\(=>\left[{}\begin{matrix}x-1=0\\x+1=0\end{matrix}\right.=>\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
Vậy...
`x^2-9`
` x^2-9= 0`
` ( x + 3)(x-3) =0`
\(=>\left[{}\begin{matrix}x+3=0\\x-3=0\end{matrix}\right.=>\left[{}\begin{matrix}x=-3\\x=3\end{matrix}\right.\)
Vậy,.....
` x^2-x`
` x^2-x = 0`
` ( x-1)x=0`
\(=>\left[{}\begin{matrix}x-1=0\\x=0\end{matrix}\right.=>\left[{}\begin{matrix}x=1\\x=0\end{matrix}\right.\)
Vậy.....
`x^2-2x`
` x^2-2x = 0`
` ( x -2)x =0`
\(=>\left[{}\begin{matrix}x-2=0\\x=0\end{matrix}\right.=>\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\)
Vậy.....
`4x+9=0`
`=>4x=-9`
`=>x=-9/4`
`-5x+6 =0`
`=>-5x=-6`
`=>x=6/5`
`x^2-1=0`
`=>x^2=1`
\(\Leftrightarrow x=\pm1\)
`x^2-9=0`
`=>x^2=9`
`=>\(x=\pm3\)`
2sqrt(x + 2) + 3sqrt(4x + 8) - sqrt(9x + 18) = 10 giải phương trình
Lời giải:
ĐKXĐ: $x\geq -2$
PT $\Leftrightarrow 2\sqrt{x+2}+3\sqrt{4}.\sqrt{x+2}-\sqrt{9}.\sqrt{x+2}=10$
$\Leftrightarrow 2\sqrt{x+2}+6\sqrt{x+2}-3\sqrt{x+2}=10$
$\Leftrightarrow 5\sqrt{x+2}=10$
$\Leftrightarrow \sqrt{x+2}=2$
$\Leftrightarrow x+2=4$
$\Leftrightarrow x=2$ (tm)
Cho biểu thức: P = (sqrt(x))/(sqrt(x) + 3) + (3sqrt(x))/(x - 9) a) Rút gọn biểu thức P. với x>=0;x ne9 . b) Tim giá trị của x để P = 2 ,
a, \(P=\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{3\sqrt{x}}{x-9}\)
\(\Rightarrow P=\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{3\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}+3\right)}\)
\(\Rightarrow P=\dfrac{x-3\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}+3\right)}+\dfrac{3\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}+3\right)}\)
\(\Rightarrow P=\dfrac{x-3\sqrt{x}+3\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}+3\right)}\)
\(\Rightarrow P=\dfrac{x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}+3\right)}\\ \Rightarrow P=\dfrac{x}{x-9}\)
b,Để P=2 \(\Leftrightarrow\dfrac{x}{x-9}=2\)
\(\Leftrightarrow x=2\left(x-9\right)\\ \Leftrightarrow x=2x-18\\ \Leftrightarrow x-18=0\\ \Leftrightarrow x=18\)