\(3\sqrt{x^2-4x+9}=3x-9\)
\(\Leftrightarrow x^2-4x+9=x^2-6x+9\)
\(\Leftrightarrow x=0\left(loại\right)\)
\(3\sqrt{x^2-4x+9}=3x-9\)
\(\Leftrightarrow x^2-4x+9=x^2-6x+9\)
\(\Leftrightarrow x=0\left(loại\right)\)
Cho biểu thức: P = (sqrt(x))/(sqrt(x) + 3) + (3sqrt(x))/(x - 9) a) Rút gọn biểu thức P. với x>=0;x ne9 . b) Tim giá trị của x để P = 2 ,
Giải các phương trình:
a) \(\sqrt{x^2-3x+2}=\sqrt{x-1}\)
b) \(\sqrt{x^2-4x+4}=\sqrt{4x^2-12x+9}\)
c) \(\sqrt{x^2-5x+6}=\sqrt{x-2}\)
d) \(\sqrt{4x^2-4x+1}=\sqrt{x^2-6x+9}\)
Giải các phương trình sau:
a. \(\sqrt{\left(3x-1\right)^2}=5\)
b. \(\sqrt{4x^2-4x+1}=3\)
c. \(\sqrt{x^2-6x+9}+3x=4\)
d. \(3\sqrt{9x+9}-\sqrt{36x+36}+2\sqrt{4x+4}=12\)
1. \(\sqrt{3x-2}+\sqrt{x-1}=4x-9+2\sqrt{3x^2-5x+2}\)
2. \(x+\sqrt{17-x^2}+x\sqrt{17-x^2}=9\)
a. \(2x^2-8x-3\sqrt{x^2-4x-5}=12\)
b. \(\left(x-3\right)\left(x+2\right)-3\sqrt{x^2-x+1}+9=0\)
c. 12\(-\sqrt{4-3x}=|3x-4|\)
d. \(\sqrt{3x-2}+\sqrt{x-1}=4x-9+2\sqrt{3x^2-5x+2}\)
\(\sqrt{4x^2-3x+1}-2\sqrt{9-12x+4x^2}-x+2=0\)
Cho A = 6/(x - 3sqrt(x)) B= (2sqrt(x))/(x - 9) - 2 sqrt x +3 (x>0,x ne9) a) Tính giá trị của A khi x = 16 b) Rút gọn biểu thức P = A/B c) So sánh P với 1. d) Tính x biết P * sqrt(x) >= x/4 + 4
\(\sqrt{3x-2}+\sqrt{x-1}=4x-9+2\sqrt{3x^2-5x+2}\)
Cho hai biểu thức A = (x + 3)/(sqrt(x) + 3) và B = ((x + 3sqrt(x) - 2)/(x - 9) - 1/(sqrt(x) + 3)) * (sqrt(x) - 3)/(sqrt(x) + 1) với x >= 0 x ne9 a) Tình già trị của biểu thức A khi x = 121 b) Chứng minh B = (sqrt(x) + 1)/(sqrt(x) + 3) c) Dat P = A/B Tìm giá trị nhỏ nhất của biểu thức P.