1. ĐK: \(x\ge1\)
Đặt \(\left\{{}\begin{matrix}a=\sqrt{3x-2}\ge0\\b=\sqrt{x-1}\ge0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}ab=\sqrt{\left(3x-2\right)\left(x-1\right)}=\sqrt{3x^2-5x+2}\\a^2+b^2=\left(3x-2\right)+\left(x-1\right)=4x-3\end{matrix}\right.\)
pt trên được viết lại thành
\(a+b=a^2+b^2-6+2ab\)
\(\Leftrightarrow\left(a+b\right)^2-\left(a+b\right)-6=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b=3\\a+b=-2\end{matrix}\right.\)
\(\Leftrightarrow a+b=3\) (vì \(a,b\ge0\))
\(\Rightarrow\sqrt{3x-2}+\sqrt{x-1}=3\)
Đến đây thì dễ rồi, bạn bình phương 2 lần để tìm x, sau đó đối chiếu với ĐK để loại nghiệm.
2. ĐK: \(-\sqrt{17}\le x\le\sqrt{17}\)
Đặt \(\left\{{}\begin{matrix}a=x\\b=\sqrt{17-x^2}\ge0\end{matrix}\right.\)
Ta lập được hệ phương trình
\(\left\{{}\begin{matrix}a+b+ab=9\\a^2+b^2=17\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b+ab=9\\\left(a+b\right)^2-2ab=17\end{matrix}\right.\) (I)
Đặt S=x+y; P=xy thì
\(\left(I\right)\Rightarrow\left\{{}\begin{matrix}S+P=9\\S^2-2P=17\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}S=5\\P=4\end{matrix}\right.\\\left\{{}\begin{matrix}S=-7\\P=16\end{matrix}\right.\end{matrix}\right.\)
Đến đây dễ rồi bạn làm tiếp nha