Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoang Tran
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 7 2021 lúc 16:23

Đặt vế trái là P:

Áp dụng BĐT Bunhiacopxki:

\(\sqrt{\left(a+b\right)\left(c+a\right)}\ge\sqrt{\left(\sqrt{ac}+\sqrt{ab}\right)^2}=\sqrt{ab}+\sqrt{ac}\)

Tương tự với 2 biểu thức còn lại, ta được:

\(P\le\dfrac{a}{a+\sqrt{ab}+\sqrt{ac}}+\dfrac{b}{b+\sqrt{ab}+\sqrt{bc}}+\dfrac{c}{c+\sqrt{ac}+\sqrt{bc}}\)

\(P\le\dfrac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}+\dfrac{\sqrt{b}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}+\dfrac{\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}=1\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)

Trên con đường thành côn...
27 tháng 7 2021 lúc 16:21

Bạn tham khảo ở đây nhé.

https://olm.vn/hoi-dap/detail/96898674827.html

nguyễn đăng khôi
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 5 2023 lúc 13:54

2:

\(VT=\dfrac{a^2b}{a-b}\cdot\dfrac{2\sqrt{2}\left(a-b\right)}{5\sqrt{3}\cdot a^2\sqrt{b}}=\dfrac{2}{15}\cdot\sqrt{6b}=VP\)
1: \(=9\sqrt{ab}+\dfrac{7\sqrt{ab}}{b}-\dfrac{5\sqrt{ab}}{a}-3\sqrt{ab}=\)6căn ab+căn ab(7/b-5/a)

=căn ab(6+7/b-5/a)

Nguyễn Thanh
Xem chi tiết
Nguyễn Quỳnh
Xem chi tiết
Neet
7 tháng 12 2017 lúc 22:18

Bài 1:

dự đoán dấu = sẽ là \(a^2=b^2=c^2=\dfrac{1}{2}\) nên cứ thế mà chém thôi .

Ta có: \(\left(a^2+1\right)\left(b^2+1\right)=\left(a^2+\dfrac{1}{2}\right)\left(\dfrac{1}{2}+b^2\right)+\dfrac{1}{2}\left(a^2+b^2\right)+\dfrac{3}{4}\)

Bunyakovsky:\(\left(a^2+\dfrac{1}{2}\right)\left(\dfrac{1}{2}+b^2\right)+\dfrac{1}{2}\left(a^2+b^2\right)+\dfrac{3}{4}\ge\dfrac{1}{2}\left(a+b\right)^2+\dfrac{1}{4}\left(a+b\right)^2+\dfrac{3}{4}=\dfrac{3}{4}\left[\left(a+b\right)^2+1\right]\)

\(VT=\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge\dfrac{3}{4}\left[\left(a+b\right)^2+1\right]\left(1+c^2\right)\ge\dfrac{3}{4}\left(a+b+c\right)^2\)(đpcm)

Dấu = xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{2}}\)

P/s: còn 1 cách khác nữa đó là khai triển sau đó xài schur . Chi tiết trong tệp BĐT schur .pdf

Unruly Kid
8 tháng 12 2017 lúc 12:03

...........

Unruly Kid
8 tháng 12 2017 lúc 12:55

2) Ta có nhận xét sau: \(ab\le\dfrac{\left(a+b\right)^2}{4}\)

Áp dụng Cauchy-Schwarz dạng Engel và AM-GM, ta có:

\(A=\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}+\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}+\dfrac{34}{ab}+2ab\)

\(A\ge\dfrac{4}{\left(a+b\right)^2}+\dfrac{4}{\left(a+b\right)^2}+\dfrac{34}{ab}+544ab-542ab\)

\(A\ge4+4+2\sqrt{\dfrac{34}{ab}.544ab}-542.\dfrac{\left(a+b\right)^2}{4}\)

\(A\ge8+272-\dfrac{271}{2}=144,5\)

GTNN của A là 144,5 khi \(a=b=\dfrac{1}{2}\)

Nguyễn Thanh
Xem chi tiết
Akai Haruma
24 tháng 5 2018 lúc 11:07

a) Sai với \(a=1,b=2\)

b)

Thực hiện biến đổi tương đương:

\(\frac{a}{3b}+\frac{b(a+b)}{a^2+ab+b^2}\geq 1\)

\(\Leftrightarrow \frac{a}{3b}+\frac{b(a+b)+a^2}{a^2+ab+b^2}-\frac{a^2}{a^2+ab+b^2}\geq 1\)

\(\Leftrightarrow \frac{a}{3b}-\frac{a^2}{a^2+ab+b^2}\geq 0\)

\(\Leftrightarrow \frac{1}{3b}-\frac{a}{a^2+ab+b^2}\geq 0\)

\(\Leftrightarrow \frac{a^2+ab+b^2-3ab}{3b(a^2+ab+b^2)}\geq 0\)

\(\Leftrightarrow \frac{(a-b)^2}{3b(a^2+ab+b^2)}\geq 0\) (luôn đúng)

Do đó ta có đpcm. Dấu bằng xảy ra khi $a=b$

c) BĐT sai với \(a=1,b=2\)

Zata
Xem chi tiết
ミ★Zero ❄ ( Hoàng Nhật )
7 tháng 3 2023 lúc 17:32

Theo đề bài ta có :

\(\dfrac{a}{b}=\dfrac{c}{d}\)

\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

Đặt \(\dfrac{a}{c}=\dfrac{b}{d}=k\) ( 1 )

Theo tính chất dãy tỉ số bằng nhau ta có :

\(k=\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\)

\(k^2=\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)  ( 2 )

Mà từ ( 1 ) = > \(k^2=\dfrac{a}{c}.\dfrac{b}{d}=\dfrac{ab}{cd}\) ( 3 )

Từ ( 2 ) , ( 3 ) 

 = > \(\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\) ( đpcm )

 

Liễu Lê thị
Xem chi tiết
OH-YEAH^^
7 tháng 11 2021 lúc 10:09

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk,c=dk\)

Ta có: \(\dfrac{ab}{cd}=\dfrac{bkb}{dkd}=\dfrac{b^2k}{d^2k}=\dfrac{b^2}{d^2}=\dfrac{b}{d}\left(1\right)\)

\(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{\left(bk-b\right)^2}{\left(dk-d\right)^2}=\dfrac{bk-b}{dk-d}=\dfrac{b\left(k-1\right)}{d\left(k-1\right)}=\dfrac{b}{d}\left(2\right)\)

Từ \(\left(1\right)\) và \(\left(2\right)\) \(\Rightarrow\dfrac{ab}{cd}=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\)

 

 

Nguyễn Hoàng Minh
7 tháng 11 2021 lúc 10:11

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)

\(\Rightarrow\dfrac{ab}{cd}=\dfrac{b^2k}{d^2k}=\dfrac{b^2}{d^2}\\ \dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{\left(bk-b\right)^2}{\left(dk-d\right)^2}=\dfrac{b^2\left(k-1\right)^2}{d^2\left(k-1\right)^2}=\dfrac{b^2}{d^2}\\ \Rightarrow\dfrac{ab}{cd}=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\)

Nguyễn Hồng Vũ
7 tháng 11 2021 lúc 10:16

Cách giải:

1+1=3

6-6=0

9-9=0

Vậy => 6-6=9-9

(3-3)+(3-3) = 3x3 - 3x3

(1+1)=3

1+1=3

zZz Cool Kid_new zZz
Xem chi tiết
tth_new
22 tháng 6 2020 lúc 20:45

Đợi t qua thi nhé full.

Khách vãng lai đã xóa
Xem chi tiết
I - Vy Nguyễn
3 tháng 3 2020 lúc 1:15

Ta có:\(\left|a\right|,\left|b\right|\) \(\leq\) \(1\)

\(\implies\) \(\left(1-a\right).\left(1-b\right)\) \(\geq\) \(0\)

\(\implies\) \(1-b-a+ab\)\(\geq\) \(0\)

\(\implies\) \(1+ab\) \(\geq\) \(a+b\)

\(\implies\) \(\left|1+ab\right|\) ​​\(\geq\)​ \(\left|a+b\right|\) \(\left(đpcm\right)\)

Khách vãng lai đã xóa
I - Vy Nguyễn
3 tháng 3 2020 lúc 1:17

chỗ nào không hiểu hỏi tớ bài này hơi khó

Khách vãng lai đã xóa