§1. Bất đẳng thức

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thanh

Cho các số thực dương a,b. Chứng minh rằng:

a/ \(\dfrac{a}{b}+\dfrac{b}{a}+\dfrac{9ab}{a^2+b^2}\ge\dfrac{13}{2}\)

b/ \(\dfrac{a}{3b}+\dfrac{b\left(a+b\right)}{a^2+ab+b^2}\ge1\)

c/ \(\dfrac{a}{2b}+\dfrac{2b}{a+b}+\dfrac{ab}{2\left(a^3+2b^3\right)}\ge\dfrac{5}{3}\)

Akai Haruma
24 tháng 5 2018 lúc 11:07

a) Sai với \(a=1,b=2\)

b)

Thực hiện biến đổi tương đương:

\(\frac{a}{3b}+\frac{b(a+b)}{a^2+ab+b^2}\geq 1\)

\(\Leftrightarrow \frac{a}{3b}+\frac{b(a+b)+a^2}{a^2+ab+b^2}-\frac{a^2}{a^2+ab+b^2}\geq 1\)

\(\Leftrightarrow \frac{a}{3b}-\frac{a^2}{a^2+ab+b^2}\geq 0\)

\(\Leftrightarrow \frac{1}{3b}-\frac{a}{a^2+ab+b^2}\geq 0\)

\(\Leftrightarrow \frac{a^2+ab+b^2-3ab}{3b(a^2+ab+b^2)}\geq 0\)

\(\Leftrightarrow \frac{(a-b)^2}{3b(a^2+ab+b^2)}\geq 0\) (luôn đúng)

Do đó ta có đpcm. Dấu bằng xảy ra khi $a=b$

c) BĐT sai với \(a=1,b=2\)


Các câu hỏi tương tự
Nguyen Ha
Xem chi tiết
Hoàng Tuấn Đăng
Xem chi tiết
Lông_Xg
Xem chi tiết
phạm thảo
Xem chi tiết
Nguyễn Quốc Việt
Xem chi tiết
Phan Đình Trường
Xem chi tiết
Phạm Lợi
Xem chi tiết
phạm thảo
Xem chi tiết
Thư Trần
Xem chi tiết