§1. Bất đẳng thức

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phan Đình Trường

Cho a,b,c là các số dương. Chứng minh rằng:

\(\dfrac{a^4}{b^3\left(c+2a\right)}+\dfrac{b^4}{c^3\left(a+2b\right)}+\dfrac{c^4}{a^3\left(b+2c\right)}\ge1\)

Neet
16 tháng 7 2017 lúc 10:28

Áp dụng BĐT cauchy-schwarz:

\(VT=\sum\dfrac{a^4}{b^3\left(c+2a\right)}=\sum\dfrac{\dfrac{a^4}{b^2}}{b\left(c+2a\right)}\ge\dfrac{\left(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\right)^2}{3\left(ab+bc+ca\right)}\)

\(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c}=a+b+c\)

\(\Rightarrow VT\ge\dfrac{\left(a+b+c\right)^2}{3\left(ab+bc+ca\right)}\ge\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1\)

Dấu = xảy ra khi a=b=c