Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Lê Phước Thịnh
Xem chi tiết
Sinh Viên NEU
11 tháng 11 2023 lúc 1:09

48 D

50 loading...  

loading...    

Nguyen Thi Mai
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 4 2021 lúc 22:24

Đặt \(g\left(x\right)=f\left(x+\dfrac{1}{3}\right)-f\left(x\right)\)

Hiển nhiên \(g\left(x\right)\) cũng liên tục trên R

Ta có: \(g\left(0\right)=f\left(\dfrac{1}{3}\right)-f\left(0\right)\)

\(g\left(\dfrac{2}{3}\right)=f\left(1\right)-f\left(\dfrac{2}{3}\right)\)

\(g\left(\dfrac{1}{3}\right)=f\left(\dfrac{2}{3}\right)-f\left(\dfrac{1}{3}\right)\)

Cộng vế với vế:

\(g\left(0\right)+g\left(\dfrac{1}{3}\right)+g\left(\dfrac{2}{3}\right)=f\left(1\right)-f\left(0\right)=0\)

- Nếu tồn tại 1 trong 3 giá trị \(g\left(0\right);g\left(\dfrac{1}{3}\right);g\left(\dfrac{2}{3}\right)\) bằng 0 thì hiển nhiên pt có nghiệm

- Nếu cả 3 giá trị đều khác 0 \(\Rightarrow\) tồn tại ít nhất 2 trong 3 giá trị \(g\left(0\right)\) ; \(g\left(\dfrac{1}{3}\right)\) ; \(g\left(\dfrac{2}{3}\right)\) trái dấu

\(\Rightarrow\) Luôn tồn tại ít nhất 1 trong 3 tích số: \(g\left(0\right).g\left(\dfrac{1}{3}\right)\) ; \(g\left(0\right).g\left(\dfrac{2}{3}\right)\) ; \(g\left(\dfrac{1}{3}\right).g\left(\dfrac{2}{3}\right)\) âm

\(\Rightarrow\) Pt \(g\left(x\right)=0\) luôn có ít nhất 1 nghiệm thuộc \(\left[0;1\right]\)

Buddy
Xem chi tiết
Hà Quang Minh
22 tháng 9 2023 lúc 12:16

Trên các khoảng \(\left( { - \infty ;0} \right)\) và \(\left( {0; + \infty } \right)\), \(f\left( x \right) = \frac{{{x^2} - 2x}}{x}\) là hàm phân thức hữu tỉ nên liên tục trên từng khoảng \(\left( { - \infty ;0} \right)\) và \(\left( {0; + \infty } \right)\).

Ta có: \(f\left( 0 \right) = a\)

\(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = \mathop {\lim }\limits_{x \to 0} \frac{{{x^2} - 2x}}{x} = \mathop {\lim }\limits_{x \to 0} \frac{{x\left( {x - 2} \right)}}{x} = \mathop {\lim }\limits_{x \to 0} \left( {x - 2} \right) = 0 - 2 =  - 2\)

Để hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) thì hàm số \(y = f\left( x \right)\) phải liên tục tại điểm \({x_0} = 0\).  Khi đó:

\(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = f\left( 0 \right) \Leftrightarrow a =  - 2\).

Vậy với \(a =  - 2\) thì hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\).

Trang Nguyễn
Xem chi tiết
👁💧👄💧👁
4 tháng 2 2021 lúc 22:00

\(f\left(-1\right)=2\Rightarrow-a+b-c+d=2\\ f\left(0\right)=1\Rightarrow d=1\\ f\left(1\right)=7\Rightarrow a+b+c+d=7\\ f\left(\dfrac{1}{2}\right)=3\Rightarrow\dfrac{1}{8}a+\dfrac{1}{4}b+\dfrac{1}{2}c+d=3\)

\(d=1\Rightarrow-a+b-c=1;a+b+c=6\\ \Rightarrow2b=7\\ \Rightarrow b=\dfrac{7}{2}\\ \Rightarrow\dfrac{1}{8}a+\dfrac{7}{8}+\dfrac{1}{2}c=2\\ \Rightarrow\dfrac{1}{2}\left(\dfrac{1}{4}a+\dfrac{7}{4}+c\right)=2\\ \Rightarrow\dfrac{1}{4}a+\dfrac{7}{4}+c=4\\ \Rightarrow a+7+4c=16\\ \Rightarrow a+4c=9;a+c=6-\dfrac{7}{2}=\dfrac{5}{2}\\ \Rightarrow3c=\dfrac{13}{2}\Rightarrow c=\dfrac{13}{6}\\ \Rightarrow a=\dfrac{5}{2}-\dfrac{13}{6}=\dfrac{1}{3}\)

Vậy \(\left(a;b;c;d\right)=\left(\dfrac{1}{3};\dfrac{7}{2};\dfrac{13}{6};1\right)\)

Nguyễn Trần Thành Đạt
Xem chi tiết
Hà Quang Minh
30 tháng 9 2023 lúc 9:43

Dựa vào đồ thị, ta thấy:

a) Trên khoảng \(\left( { - \infty ;0} \right)\) , giá trị của f(x) tăng

b) Trên khoảng \(\left( {0; + \infty } \right)\) , giá trị của f(x) giảm

TrầnThư
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 6 2021 lúc 14:01

\(f'\left(x\right)=0\) có 3 nghiệm \(x=-1;0;2\)

Dấu của \(f'\left(x\right)\) trên trục số:

undefined

Ta thấy có 2 lần \(f'\left(x\right)\) đổi dấu từ âm sang dương nên hàm có 2 cực tiểu

Nguyễn Lê Phước Thịnh
29 tháng 6 2021 lúc 14:04

Chọn C

Trần Tuấn Hoàng
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 1 lúc 10:10

Thay \(x=0;y=0\) vào giả thiết ta được \(f\left(0\right)=0\)

Thay \(y=0\) ta được \(f\left(x\right)+f\left(-x\right)=0\Rightarrow f\) là hàm lẻ

(Phân tích 1 chút: khi đã có hàm lẻ, ta cần thế tiếp 1 cặp sao cho "khử" được biểu thức phức tạp dạng hàm lồng đầu tiên, bằng cách tìm 1 giá trị y sao cho: \(x.f\left(y\right)-y=-\left(x+y\right)\) hoặc là \(x.f\left(y\right)-y=-\left(xy-x\right)\). Cái thứ nhất cho ta \(x.\left[f\left(y\right)+1\right]=0\Rightarrow f\left(y\right)=-1\) , nghĩa là ta chỉ cần tìm 1 hằng số c sao cho \(f\left(c\right)=-1\). Cái thứ 2 ko cho điều gì tốt nên bỏ qua. Bây giờ ta đi tìm c. Vế phải cần bằng -1, nghĩa là \(xy=-\dfrac{1}{2}\), vế trái cần khử bớt 2 số hạng. Nhưng trước khi có c thì \(f\left(x.f\left(y\right)-y\right)\) chưa khử được, nên ta cần khử cặp sau, bằng cách cho \(xy-x=-\left(x+y\right)\Rightarrow xy=-y\Rightarrow x=-1\), thay vào \(xy=-\dfrac{1}{2}\Rightarrow y=\dfrac{1}{2}\). Xong.)

Thế \(x=-1;y=\dfrac{1}{2}\) ta được:

\(f\left(-f\left(\dfrac{1}{2}\right)-\dfrac{1}{2}\right)+f\left(-\dfrac{1}{2}+1\right)+f\left(-1+\dfrac{1}{2}\right)=-1\)

\(\Leftrightarrow f\left(-f\left(\dfrac{1}{2}\right)-\dfrac{1}{2}\right)=-1\)

Đặt \(c=-f\left(\dfrac{1}{2}\right)-\dfrac{1}{2}\) là 1 hằng số nào đó

\(\Rightarrow f\left(c\right)=-1\)

Thế \(y=c\) vào ta được:

\(f\left(x.f\left(c\right)-c\right)+f\left(cx-x\right)+f\left(x+c\right)=2c.x\)

\(\Leftrightarrow f\left(-x-c\right)+f\left(x+c\right)+f\left(cx-x\right)=2c.x\)

\(\Leftrightarrow f\left(cx-x\right)=2c.x\) (1)

- Nếu \(c=1\Rightarrow f\left(0\right)=2x\) ko thỏa mãn \(f\left(0\right)=0\) 

\(\Rightarrow c\ne1\), khi đó đặt \(cx-x=t\) \(\Rightarrow x=\dfrac{t}{c-1}\)

(1) trở thành \(f\left(t\right)=\dfrac{2c}{c-1}.t\)

Đặt \(\dfrac{2c}{c-1}=a\) \(\Rightarrow f\left(t\right)=a.t\) 

Hay hàm cần tìm có dạng \(f\left(x\right)=ax\) với a là hằng số

le thi khanh huyen
Xem chi tiết
Mai Anh
Xem chi tiết