1. Cho phương trình \(\left(x^2+\text{ax}+1\right)^2+a\left(x^2+\text{ax}+1\right)+1=0\) có nghiệm duy nhất. Chứng minh \(a>2\)
2. Cho a,b,c thỏa mãn \(a+2b+5c=0.Cmr:\) \(\text{ax}^2+bc+c=0\) có nghiệm
3. Giả sử phương trình \(\left(m+3\right)x^2+2\left(m+1\right)x+m=0\) có 2 nghiệm \(x_1,x_2\). Tìm a để \(F=\left(x_1-a\right)\left(x_2-a\right)\) không phụ thuộc vào m
1. Chứng minh rằng: phương trình \(x^2-\left(m-1\right)x+2m-7=0\) luôn có 2 nghiệm phân biệt.
Tìm GTNN của \(T=\dfrac{1}{\left(x_1-1\right)^{2018}}+\dfrac{1}{\left(x_2-1\right)^{2018}}\) với \(x_1,x_2\) là 2 nghiệm của phương trình.
2. Giải phương trình \(\left(x+1\right)\sqrt{2x^2-1}=\left(x-1\right)\left(2x-1\right)\)
3. Giải hệ phương trình \(\left\{{}\begin{matrix}x\left(x^2+\left(y-z\right)^2\right)=2\\y\left(y^2+\left(z-x\right)^2\right)=16\\z\left(z^2+\left(x-y\right)^2\right)=30\end{matrix}\right.\)
1,\(\left\{{}\begin{matrix}x^2+xy-3x+y=0\\x^4+3x^2y-5x^2+y^2=0\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}\left(2x-1\right)^2+4\left(y-1\right)^2=22\\xy\left(x-1\right)\left(y-2\right)=1\end{matrix}\right.\)
3, \(\left\{{}\begin{matrix}\left(x^2+y^2\right)\left(x+y+1\right)=25\left(y+1\right)\\x^2+xy+2y^2+x-8y=9\end{matrix}\right.\)
4,\(\left\{{}\begin{matrix}5x^2y-4xy^2+3y^2-2\left(x+y\right)=0\\xy\left(x^2+y^2\right)+2=\left(x+y\right)^2\end{matrix}\right.\)
Cho các số thực a, b, c. Chứng minh rằng: \(\left(\frac{a+2b}{b}\right)\left(3+\frac{7b}{c}\right)\left(7+\frac{5c}{a}\right)\ge8\sqrt{30}\)
Giải và biện luận các phương trình sau theo tham số m :
a) \(\left|2x-5m\right|=2x-3m\)
b) \(\left|3x+4m\right|=\left|4x-7m\right|\)
c) \(\left(m+1\right)x^2+\left(2m-3\right)x+m+2=0\)
d) \(\dfrac{x^2-\left(m+1\right)x-\dfrac{21}{4}}{x-3}=2x+m\)
1/ Cho tam giác ABC có AB = 2, BC = 3 và \(\widehat{ABC}=60^o\)
a) Tính chu vi và diện tích của tam giác ABC.
b) Tìm vị trí điểm K sao cho \(\overrightarrow{KA}+\overrightarrow{KB}+2\overrightarrow{KC}=\overrightarrow{0}\).
c) Cho điểm M thay đổi nhưng luôn thỏa mãn \(\left(3\overrightarrow{MK}+\overrightarrow{AK}\right).\left(\overrightarrow{MA}+\overrightarrow{MB}+2\overrightarrow{MC}\right)=0\). Chứng minh M luôn thuộc 1 đường tròn cố định.
2/ Giải phương trình và hệ phương trình:
a) \(\frac{\sqrt{5x-4x^2}-x}{x-1}=2\)
b) \(\left\{{}\begin{matrix}x^2-y=y^2-x\\x^2-6y=7\end{matrix}\right.\)
cho đẳng thức x^2-x+y^2-y=xy
chứng minh (\(\left(y-1\right)^2< \dfrac{4}{3}\)
chứng minh \(\frac{1}{x^2}+\frac{1}{y^2}\text{≤}\frac{8}{\left(x+y\right)^2}\) với x,y>0
giải các hệ phương tình sau :
1) \(\left\{{}\begin{matrix}x+y+\dfrac{1}{x}+\dfrac{1}{y}=5\\x^2+y^2+\dfrac{1}{x^2}+\dfrac{1}{y^2}=9\end{matrix}\right.\)
2) \(\left\{{}\begin{matrix}x\left(3x+2y\right)\left(x+1\right)=12\\x^2+2y+4x-8=0\end{matrix}\right.\)
3) \(\left\{{}\begin{matrix}x-3y=\dfrac{4y}{x}\\y-3x=\dfrac{4x}{y}\end{matrix}\right.\)
giúp mình với ạ ><